

Performance of an Occam/transputer
implementation of interval arithmetic∗

Ole Caprani
Computer Science Department, Aarhus University

Kaj Madsen
Institute for Numerical Analysis, Technical University of Denmark

August 1993

Abstract

Rounded interval arithmetic is very easy to implement by means of
directed rounding arithmetic operators. Such operators are available
in the IEEE floating point arithmetic of the transputer. When a few
small pieces of assembly language code is used to access the directed
rounding operators, the four basic rounded interval arithmetic oper-
ators can easily be expressed in the programming language Occam.
The performance of this implementation is assessed and it is shown
that the time consuming part of the calculation are not the directed
rounding floating point operations as one might have expected. Most
of the time is spent with transport of operands to and from the on-chip
floating point unit and the procedure call/parameter passing overhead.
Based on this experience the implementation is improved. This im-
plementation runs with 0.15 MIOPS (Million Interval Operations Per
Second) or 0.30 MFLOPS on an example interval calculation proposed
by Moore. Furthermore, it is demonstrated that an advanced interval
language compiler may provide a performance of 0.30 MIOPS or 0.59
MFLOPS on this example calculation.

∗Presented at the conference on Nomerical Analysis with Automatic Result Verification
Lafayette, Louisianna, 1993.

1

1 Introduction

Rounded interval arithmetic as defined by Moore [1], is easy to define in
terms of directed rounding arithmetic operators. E.g. with interval addition
defined as:

A = [a, a], B = [b, b], A+B = [a+ b, a+ b]

we obtain the following rounded interval addition:

A⊕B[a+ < b, a > +b]

where + < is downwardly rounding addition and > + is upwardly rounding
addition written with a notation as in PASCAL-XSC, see Wallis [6]. If such
directed rounding operators are available in a programming language as in
PASCAL-XSC, implementation of rounded interval arithmetic is very easy.
E.g. rounded interval addition ⊕ can be implemented in PASCAL-XSC as
the following procedure, see Wallis:

procedure iadd(a, b: interval; var res: interval);
begin

res.inf := a.inf + < b.inf;
res.sup := a.sup > + b.sup;

end

On processors that conforms to the IEEE Standard 754, [3], implementation
of rounded interval arithmetic is straight forward since the IEEE floating
point standard includes directed rounding operators. Furthermore, since
most processors implement both the normal floating point operations and
the directed rounding operations in hardware so the time taken are approxi-
mately the same for normal and directed rounding operations it seems that an
efficient rounded interval implementation can be obtained on such processors.
This is investigated in the following. Efficiency of an IEEE based interval
implementation has been assessed for one processor, namely the transputer
T800, [4]. This processor has an on-chip floating point unit (FPU) that
conforms to the standard.

2

In the next section it is shown how rounded interval arithmetic can be imple-
mented on the transputer along the lines above in the programming language
Occam, [5]. In the third section we assess the performance of this implemen-
tation by means of one of the test cases of Moore, [2]. It turns out that
the execution time of the Occam/transputer implementation is not domi-
nated by the time it takes to execute the directed rounding operations on
the FPU. The dominating factors turn out to be the overhead time of the
procedure call/parameter passing, the endpoint inspection in multiplication
and division, and the time it takes to transport the operands to and from the
on-chip FPU. This is described in the fourth section. In the fifth section some
improvements are given and a simple and reasonably efficient implementa-
tion of rounded interval arithmetic is obtained. To carry the improvement
even further a compiler should be written e.g. for an interval language as
PASCAL-XSC to produce efficient code for the interval operations on the
transputer. This is demonstrated in the last section. All the experiments
have been carried out on a 20 MHz T800 transputer, [4].

2 Simple interval arithmetic on the transputer

Since it is not possible from Occam to access the rounding mode of the
floating point unit on the transputer some lines of assembly code is needed
to do the job. E.g. the directed rounding operator > + can be written as an
Occam function with a body of assembly code:

REAL64 FUNCTION AddRoundUp(VAL REAL64 a,b)

REAL64 result:

VALOF

SEQ

GUY

LDLP a

FPLDNLDB -- FAreg := a

LDLP b

FPLDNLD -- FBreg := a, FAreg := b

FPURP -- round to plus infinity

FPADD -- FAreg := FAreg >+ FBreg

LDLP result

3

FPSTNLDB -- result := a >+ b

RESULT result

:

FAreg and FBreg are the names of the two top elements of the three valued
stack of the FPU, [4]. The other rounding operations can be written quite
similarly as Occam functions. With these Occam functions the rounded
interval arithmetic operations can be programmed as Occam procedures.
Floating point intervals are represented as the Occam type [2]REAL64, i.e.
an array of two floating point numbers of type REAL64. The array element
indexed 0 is the left endpoint (left= 0), array index 1 gives the right endpoint
of the interval (right=1). With these definitions the Occam procedure for
addition is straight forward:

PROC Interval.Add([2]REAL64 c , VAL [2]REAL64 a,b)

SEQ

c[left] := AddRoundDown(a[left],b[left])

c[right]:= AddRoundUp(a[right],b[right])

:

Interval subtraction is similar. In the procedure for interval multiplication
the signs of the interval operands are analyzed to form the endpoints of
the result with as few multiplications of operand endpoints as possible [1].
Division is performed by means of interval multiplication.

3 Performance of simple interval arithmetic

In [2], Moore describes an interval implementation on the PDP 11/40E by
means of microprogrammed directed rounding operations. To assess the ef-
ficiency of the implementation he calculated the sum:

s =
9000∑
i=1

(
(i− 1) ∗ (i− 2) ∗ (i2 − 2)

(i+ 1) ∗ (i+ 2) ∗ (i2 + 2)
− 1)2

4

This was carried out by means of floating point arithmetic and rounded
interval arithmetic. Moore found that the calculation performed by means
of interval arithmetic was 2 times slower than the calculation performed
with floating point arithmetic. This is explained as follows: Every interval
operation involves approximately 2 floating point operations and the time
taken for a floating point operation and a directed rounding operation is
approximately the same.

The sum s has also been calculated on the transputer by means of floating
point arithmetic (this is denoted realSum) and by means of the interval
procedures of the previous section (this is called intervalSum). The programs
are included as appendix 1. The results were:

realSum intervalSum
time 0.144 sec 1.61 sec
result 8.5780573082 [8.578057308265, 8.578057308282]

The factor of this implementation is thus 11.2. Certainly, this indicates that
the floating point operations are not the time consuming part of the interval
calculation.

To assess this let us first consider the FPU utilization. The number of floating
point operations per second of the two calculations are (9000 ∗ 16 floating
point operations in realSum; in intervalSum each interval operation is taken
as 2 floating point operations):

realSum intervalSum
1.0 MFLOPS 0.18 MFLOPS

The performance of the realSum calculation is close to other performance
results for heavy FPU bound calculations e.g. the Livermore Loops with
1.5 MFLOPS, [4]. With a floating point addition time of 450 nsec, [4], i.e.
2.2 MFLOPS when only addition operations are performed, this seems to
indicate that the FPU is busy more than 50 % of the time during the real-
Sum calculation. The utilization of the FPU in the intervalSum calculation
suggests that there is room for improvements.

5

4 Analysis of the performance

Now, the inefficiency of the intervalSum calculation is caused by the pro-
cedure call/parameter passing overhead, the investigation of the endpoints
to be multiplied in the interval multiplication and division, and the time it
takes to transport operands to and from the floating point unit. This can be
demonstrated as follows: The intervalSum calculation has been performed
with empty bodies of the directed rounding interval functions. This takes
1.22 seconds. This means that 76 % of the execution time of 1.61 seconds
is procedure call/parameter passing overhead and investigation of endpoints.
To assess the operand transport overhead, realSum has been rewritten so all
intermediate results are stored explicitly as in intervalSum. This version of
realSum takes 0.216 seconds. This gives 0.66 MFLOPS. The difference of 33
% or 0.072 seconds shows that the utilization of the FPU depends on the use
of the operand stack of the unit. In the second version of realSum all floating
point operations are preceded by the transport of two operands from memory
to the stack and followed by a transport of the intermediate result back to
memory. These explicit transports are so time consuming compared to float-
ing point operations that the extra time of the second version is spent with
these transports. E.g. the addition time is approximately 450 nsec and the
time it takes to transport the two operands and the result is approximately
750 nsec.

Now, if we consider the time for the intervalSum calculation, this can be
written as the sum of the three contributions measured above:

tintervalSum = tcall/parameter,endpoint + 2 ∗ ttransport + 2 ∗ trealSum

Since 1.61 seconds is approximatelyequal to 1.22+2∗0.072+2∗0.144 seconds
it seems that we have accounted for most of the contributions to the time for
the intervalSum; the major contribution being the procedure call/parameter
passing overhead and endpoint investigation.

6

5 Improved interval arithmetic

The procedure call/parameter passing overhead suggests that an immediate
improvement of the simple implementation i8 to program the bodies of the
interval procedures in assembly to avoid the overhead of the calls to the
directed rounding functions. E.g. interval addition as follows:

PROC Interval.Add([2]REAL64 c , VAL [2]REAL64 a,b)

GUY

-- c[left] := AddRoundDown(a[left],b[left])

LDLP a[left]

FPLDNLB -- FAreg := a[left]

LDLP b[left]

FPLDNLDB -- FBreg := a[left] , FAreg := b[left]

FPURM -- round to minus infinity

FPADD -- FAreg FAreg < + FBreg

LDLP c[left]
FPSTNLDB -- c[left] := a[left] <+ b[left]

-- c[right] := AddRoundUp(a[right],b[right])

LDLP a[right]

FPLDNLDB -- FAreg := a[right]

LDLP b[right]

FPLDNLDB -- FBreg := a[right] , FAreg := b[right]

FPURM -- round to plus infinity

FPADD -- FAreg FAreg > + FBreg

LDLP c[right]
FPSTNLDB -- c[right]:= a[right] <+ b[right]

:

This gives the following execution times:

realSum intervalSum
0.144 seconds 0.97 seconds
1.0 NFLOPS 0.30 MFLOPS

Now the factor is reduced to 6.7 and the FPU utilization is almost doubled.

7

6 Optimized interval calculation

To improve the execution time even further the procedure calls of the inter-
valSum program can be substituted with procedure bodies to obtain in-line
code for the interval operations e.g. as produced by a simple compiler. This
results in an execution time of 0.75 seconds and a factor of 5.2. Now, the
floating point unit utilization has been improved to 0.38 MFLOPS.

This performance can be improved once more if we remove the endpoint
investigation in the multiplications of the numerator and denominator in all
but the first term of the sum. The reason is that all intervals in the numerator
and denominator are non-negative except for the intervals of the first term.
Hence, the endpoint investigations can be skipped in the six multiplications
of the numerator and denominator. This results in an execution time of 0.58
seconds and a factor of 4.

As a final improvement we can demonstrate how the calculation can be re-
arranged in order to make use of the stack of the floating point unit. In the
realSum the instructions produced by the Occam compiler to calculate the
numerator:

(i− 1) ∗ (i− 2) ∗ (i2 − 2)

make use of the stack so that only 8 operand transfers are made instead of
the 18 which would be needed if 3 transfers were involved in every floating
point operation.

The stack can be used just as efficiently in the intervalSum calculation if we
rearrange the interval calculation of the mlmerator so that we first calculate
the left endpoint as:

(i− < 1)∗ < (i− < 2)∗ < (i∗ < i− < 2)

and then the right endpoint by a similar expression. This is of course only
possible for all but the first term of the sum. The execution time is now
reduced to 0.49 seconds, the factor is 3.4 and the FPU utilization is 0.59
MFLOPS. This is almost a factor of two faster than the procedure based
implementation of the previous section.

8

There are still room for improvements. The test for division by a zero in-
terval can be removed. An interval power operation can be used instead of
the explicit usage of interval multiplication in the outermost second power
operation of each term. Etc. However, the improvements reported already
suggests that to obtain efficient interval calculation we need compilers for
interval languages as PASCAL-XSC that can produce the kind of code that
has been produced above by hand for the Moore sum.

The performance of the various versions of the interval calculation presented
can be summarized as in the following table:

7 Discussion

Directed rounding in hardware makes it easy to implement the basic interval
operations. Such an implementation is efficient in terms of absolute speed
(MIOPS) compared to a software implementation. E.g. for a PASCAL-
XSC software implementation on IBM-PC, intel 486, we obtain 35 seconds
for realSum and 75 seconds for intervalSum (The programs are included in
appendix 2). This corresponds to 2000 IOPS, which is rather poor compared
to the hardware implementation on the transputer.

It is, however, hard to obtain a good performance of an interval calculation
relative to a floating point calculation by means of directed rounding in
hardware. A factor of 6−10 is easily obtained for the implementation on the
transputer. But to get close to a factor of 2 requires much effort. The reason
is that the overhead of e.g. endpoint inspection has a greater influence on
the time for the interval calculation when fast directed rounding operations
are used.

9

8 Conclusion

A reasonably efficient procedure based implementation of the basic interval
operations have been described. The performance has been tested on the
Moore sum and a performance of 0.15 MIOPS (Million Interval Operations
Per Second) is obtained.

It seems that an even more efficient implementation of interval calculations
can be obtained e.g. on the transputer if compilers are written for interval
languages as PASCAL-XSC to produce code that avoids the call/parameter
passing overhead of the procedure based implementation, utilize the stack
of the floating point unit and optimize the endpoint investigations of the
multiplication and division operations. The efficiency gained by the usage of
this kind of optimized code in the Moore sum was a factor 2.

References

[1] [1] Moore,R.E,
Interval Analysis,
Prentice Hall, 1966.

[2] [2] Moore,R.E,
Microprogrammed Interval Arithmetic,
SIGNUM Newsletter, vol. 15, no 2, page 2, 1980.

[3] [3] IEEE,
ANSI/IEEE Standard 754-1985 for Pinary Floating-Point Arithmetic,
IEEE Comp. Soc., Los Alamitos, Calif. 1985.

[4] [4] Mark Homewood et. al.,
The IMS T800 Transputer, IEEE Micro, Oct. 1987.

[5] [5] INMOS Limited
Occam2 Reference Manual
Prentice Hall, 1988.

[6] [6] Peter J. L. Wallis (ed.),
Improving Floating-Point Programming,
John Wiley & Sons, 1990.

10

[7] [7] R. Klatte et al.,
PASCAL-XSC,
Springer-Verlag, 1991.

11

Appendix 1 realSum and intervalSum in Occam

The real and interval calculation of the Moore sum can be programmed as
follows in Occam:

PROC RealMoore(REAL64 s)

VAL REAL64 one IS 1.0(REAL64):
VAL REAL64 two IS 2.0(REAL64):
VAL REAL64 zero IS 0.0(REAL64):

INT i:

REAL64 i.r, sum, term:

SEQ

sum:=zero

SEQ i=1 FOR 9000
SEQ

i.r := REAL64 ROUND i

term:= (i.r-one)∗((i.r-two)∗((i.r∗i.r)-two))

term:= (term/((i.r+one)∗((i.r+two)∗((i.r∗i.r)+two))))-one
sum := sum + (term∗term)

s:= sum

:

PROC IntervalMoore([2]REAL64 s)

VAL [2]REAL64 one IS [1.0(REAL64), 1.0(REAL(64)]:
VAL [2]REAL64 two IS [2.0(REAL64), 2.0(REAL(64)]:
VAL [2]REAL64 zero IS [0.0(REAL64), 0.0(REAL(64)]:
INT i:

[2]REAL64 i.int, sum, t1,t2,t3,t4:

SEQ

sum:=zero

SEQ i=1 FOR 9000
SEQ

i.int := [REAL64 ROUND i, REAL64 ROUND i]

Interval.Sub(t1,i.int,one)

12

Interval.Sub(t2,i.int,two)

Interval.Mul(t3,t1,t2)

Interval.Mul(t1,i.int,i.int)

Interval.Sub(t2,t1,two)

Interval.Mul(t1,t3,t2) -- t1 = (i-1)(i-2) (i∗i-2)

Interval.Add(t2,i.int,one)

Interval.Add(t3,i.int,two)

Interval.Mul(t4,t2,t3)

Interval.Mul(t2,i.int,i.int)

Interval.Add(t3,t2,two)

Interval.Mul(t2,t4,t3) -- t2 = (i+1)(i+2)(i∗i+2)

Interval.Div(t3,t1,t2)

Interval.Sub(t1,t3,one)

Interval.Mul(t2,t1,t1) -- t2 = (t1/t2 - 1)∗ ∗ 2

Interval.Add(t1,sum,t2)

sum := t1

s: sum

:

Appendix 2 realSum and intervalSum in PASCAL-XSC

The real and interval calculation of the Moore sum can be programmed as
follows in PASCAL-XSC:

program RealMoore (input,output);

var s, term : real;

i : integer;

begin

s := 0.0;
writeln(’start’);

for i:= 1 to 9000 do

begin

term:=(i-1.0)∗(i-2.0)∗(i∗i-2.0);
term:=term /

((i+1.0)∗(i+2.0)∗(i∗i+2.0));

13

term:=term -1.0;

s := s + term∗term;
end;

writeln(s);

end.

program IntervalMoore (input,output);

use i ari;

var s,term,i r: interval;
i : integer;

begin

s:=intval(0.0);
writeln(’start’);

for i:= 1 to 9000 do

begin

i r:=intval(i);

term:=(i r-intval(1.0))∗(i r-intval(2.0))∗(i r∗i r-intval(2.0));

term:= term /

((i r+intval(1.0))∗(i r+intval(2.0))∗(i r∗i r+intval(2.0)));

term:=term-intval(1.0);

s:=s + term∗term;
end;

writeln(s);

end.

14

