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exp  [-jkp(1 - i2p. ER)] dS (31c) 

in which C,  = (jkg/4)C(e-jkR/R) and the integration is to be 
performed on  the  paraboloidal  surface with  respect to (p ,B,d) .  

It is interesting to note  that (31) and Table I are  the  same 
except for a sign factor.  This shows that  the radiation  from the 
aperture  plane is that of a dipole  instead a Huygens  source. 
This comes from  the fact that surface current  distribution (30)  is 
calculated from I& only. So the far-field calculations  correspond 
to (19). In fact,  there is a constant  proportionality between f,, 
F,, and.&., F, from (19) and (31). As D/I increases, the  angle 0, 
which  sees the main lobe and first  few sidelobes, gets  smaller 
so the  term (1 - cos 0) approaches  zero yielding zero far-field 
cross polarization provided polarization purity  is  achieved at  
the  aperture plane. 

CONCLUSIONS 
All these considerations  lead us to the conclusion that  the 

cross polarization performance of reflector antenna system 
largely  depends on  the feed  system and I / D  ratio. For this reason, 
superior performance of Cassegrainian or front-fed paraboloids 
with  respect to polarization purity  is  closely  related to  the feed 
design. Thus this paper puts  an end to the controversy  recently 
arisen ([7]-[9]) about  the immunity  of  these two types of antenna 
systems against  depolarization effects. A detailed treatment may 
be required to see to what extent other  factors may  influence the 
cross polarization performance  of reflector antennas. 
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Synthesis of Nonunifonnly Spaced  Arrays  Using a 
General  Nonlinear  Minimax  Optimization  Method 

H.  SCHJER-JACOBSEN, MEMBER, IEEE, AKm K. MADSEN 

Abstract-Antenna patterns can be synthesized using a new nonlinear 
minimax optimization method  with snre convergence properties. Not 
requiring derivatives, the proposed method is general and easy to use 
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so that  it might be applied to a wide variety of nonlinear synthesis 
problems for which analytical  solutions  are not known. To test the 
algorithm a group of test problems for which exact analytical  solutions 
are known has been considered, namely, optimization of Dolph-Cbebyshev 
arrays by spacing variation. The method is further applied to find the 
element positions in  nonnniformly spaced linear arrays with  uniform 
excitation that produce minimized (equal) sidelobe  levels, and com- 
parisons are made  with conventional Dolph-Chebysbev arrays. 

I. INTRODUCITON 

The minimax  problem  of  minimizing the maximum  sidelobe 
level in  the  pattern with  prescribed  beamwidth from  a  linear 
half-wavelength  spaced array was  solved  analytically  by Dolph 
[l]  by  identifying the  array  factor with  Chebyshev  polynomials. 
The present paper is  concerned  with  minimax  synthesis of antenna 
patterns in cases that  do  not have  known analytical solutions. 
Hence, we  will primarily  be dealing  with iterative methods. 

Ma [2] described the  application of perturbational and linear 
programming techniques to nonunifonnly spaced  arrays. James 
[3]  found  the excitation in  arrays with  fixed  spacings  by linear 
programming  and  further  introduced  nonlinear  constraints to 
maintain a specified 3 dB beamwidth  while  minimizing the 
maximum sidelobes. Recently Streit [4] derived  sufficient con- 
ditions  that  optimum beam patterns exist for unequally spaced 
arrays,  and  he gave  examples  of  determination  of optimum 
element currents by means of the Remez  exchange algorithm, 
however,  with  fixed  spacings. To the  authors’ knowledge no 
examples of general  minimax optimization of antenna  patterns 
in cases  where the  approximation  errors are nonlinear  functions 
of the design parameters  have  appeared in the  literature. It seems, 
therefore, well motivated to try to develop and apply efficient 
nonlinear minimax optimization algorithms. 

In this  paper we describe a recently  developed algorithm  for 
nonlinear  optimization using  minimax objectives. The algorithm 
does  not  require evaluation  of  derivatives and hence it may be 
applied to design more complex antenna systems  where  deriva- 
tives are not easily obtained by analytical expressions. The appli- 
cation of the  proposed  algorithm is demonstrated by simple,  yet 
typical, nonlinear  minimax problems: minimum  sidelobe  syn- 
thesis of arrays by variation of  element  spacings. First we give 
a formulation of the general  problem and describe the  algorithm. 

11. STATEMENT OF GEhTRAL SYNTHESIS PKOBLLM 

Let  the desired antenna  pattern PD to be  synthesized  be a 
function of some field coordinates $ 

The design parameters to be  varied are elements in an n-dimen- 
sional vector x and  the actual  pattern  obtained is denoted 

Given a set of m field coordinates . e,$,,,, we then define 
an m-dimensional  vector  of  residuals f ( x )  with the  components 

The residuals are measures  of the  errors by  which the  actual 
pattern  approximates  the desired pattern  at  the m sample  points 
under consideration. The wj are weights that  are normally  chosen 
equal to unity. However, if relatively low errors  are desired in 

{r,@,dl. 
As an example, $ may  be  defined  by  spherical  coordinates: $ = 
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certain  regions the corresponding weights should be chosen 
greater  than 1. 

Our  problem is  now to minimize with respect to x the maximum 
error F(x) defined  by 

to achieve the desired minimax solution to  the  pattern synthesis 
problem. 

It should be pointed  out that we consider  the general case 
where the  residuals are nonlinear  functions of the design param- 
eters. Note  also that no restriction  has been put on  the  type of 
patterns  considered;  both real- and complex-valued patterns  are 
covered. 

In the next section we intend to minimize (4) by developing an 
iterative  technique with sure convergence properties. 

111. NO~ZINEAR MINIMAX OFTIMIZATION 
The iterative  method  for minimization of (4) is based on 

successive linear  approximations to  the nonlinear residuals (3). 
At the  kth  stage of the  iteration let F k ( h )  be deiined through 

Fk(h) E Il.f(Xk) + g k h l l  (5) 

where Bk is an approximation to the  derivative  matrix {2t;:/2xi} 
found by means of the Broyden updating  formula [ 5 ]  without 
extra  calculations of the residuals. Thus,  for  small values of 
llhl, 4 ( h )  is an approximation  to F ( x k  + h). The increment 

h k  to  the  current  point x k  is then  found by solving the  constrained 
linear minimax problem 

which may be set up  as  a  linear  programming  problem  and solved 
by any suitable  linear  programming  routine. However, for 
greater efficiency  we  use a  method  [6]  similar  to  the exchange 
algorithm  for solving systems  of linear  equations in the minimax 
sense. The point (xk + hk) is accepted  as  the next current  point 
if the decrease in the objective function  Fexceeds  a small multiple 
of the decrease in the  linear  approximation,  more precisely if 

a = 0.01. Otherwise we let X k + l  = x,. 
The bound 3.1, is adjusted  during  the  iterations  according to  the 

following strategy. If the decrease in the objective function F is 
poor  compared to  the decrease predicted by the  linear  approxima- 
tion Fk, then  the  step length may be too  large. Consequently, if 
(7) is not satisfied  with a = 0.1, we let & + I  = 0.7Ilh,d. Alter- 
natively the  step length may be unnecessarily small if the agree- 
ment between each residual fj and its linear  approximation is 
very good at  the  point x k  + h k .  Therefore we test the  inequality 

and if it holds we let I++ = 2 l l h k l l .  This is  sensible  since Taylor’s 
formula  states  that  the  term  on  the  left-hand side of (8) is of 
the  order ~ ~ h k ~ ~ z ,  whereas the  term  on  the  right-hand side is  of 
the  order l \hkl l .  In all other cases we let = &. The various 
constants governing the  optimization  strategy  have been  deter- 
mined through extensive numerical experiments. It was found, 
however, that  the choice of the  constants was not critical. 

In order  that  the matrices Bk are  good  approximations to  the 
derivative  matrices,  it  is important  that  the  directions k k  satisfy 

Fig. I .  Unequally  spaced  symmetric  N-element linear broadside  arrays. 
(a) N even. (b) N odd. 

description of this is beyond the scope of this  paper,  details 
may  be found in [7] and [ S I .  
An important  feature of the  algorithm is that it possesses 

sure convergence properties.’ Madsen [9 ]  has shown that if the 
problem under consideration is nonsingular  the  final rate  of 
convergence is  super-linear. This  means that if the  optimum 
solution is denoted by x* the  inequality 

IIxk+1 - x*II 5 &klIxk - x*l] (9) 
where &k + 0, will be fulfilled. 

A  Fortran  implementation of the  algorithm described above 
along with another minimax algorithm that requires  evaluation 
of the exact first-order derivatives [lo] is available in Madsen 
and Schjser-Jacobsen [11 1. The user has  to specify initial values 
of A and  a general upper  bound A on  the  step  length. In all 
examples presented in the following ,lo = A = 0.1 is used. 

Iv. SYNTHESIS OF ARRAYS BY SPACING VARIATION 

Consider a  linear symmetrical broad-side  array with N ele- 
ments  as an example (Fig. 1). The  radiation  pattern is  given by 

N12 
g,(e) = 2 COS ( 2 4 ~ ) ,  

i =  1 
u = sin 0, N even (loa) 

u = sin 0, N odd (lob) 

where ai is the  (normalized)  excitation coefficient and Si the 
distance (in wavelengths) from  the  array center.  We now attempt 
to synthesize arrays with minimum equal sidelobes by varying 
the element positions  rather  than  the  excitation coefficients. T h i s  
problem clearly represents  a  nonlinear minimax problem, where- 
as finding the  excitation coefficients for given (unequal) element 
spacings is a  linear problem that may  be  solved by well-known 
linear programming techniques. 

To minimize the maximum sidelobe level  define n design 
parameters xi such that 

Si = xi + ti-1, 

with Eo = 0 and cn+, = (?./4)(N - 1). Hence, x i  represents  the 
element spacings,  except  when i = 1 for N even  in  which case x1 

some linear independence conditions.  This is ensured by intro- 
ducing ‘‘Special iterations’’ as suggested by Powell V I .  A 2 BY this term  we  mean  that .-c~ will  converge to a  stationary point of F. 
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is the distance from  the  array center to element 1.  Note  that the 
total length is a fixed constant by this deiinition. 

The residuals in (3) are defined through 

fj = ge(ej>/ge(O>, i = 12,  * -,m (12) 
0 0 

where the m sample points 0, are chosen such that 

00 < el < e, < . . . < ej < . . . < e, = 90". (13) 

This corresponds to the choice wj = 1 and PD(ej) = 0 in (3). 

V. DOLPH-CHEBYSHEV ARRAYS AS TEST CASES 

In order to demonstrate the  method on cases where the exact 
minimax solutions are known, we first consider optimization of 
Dolph-Chebyshev arrays by variation of  element spacings. With 
the element spacings being 142, the normalized excitation CO- 
efficients for such arrays may be calculated by the formulas given 
by Stegen [12]. For six- and eight-element arrays we get 

( u ~ , u ~ , c z ~ )  = (1.0,0.7768,0.5406), N = 6 
and 

( a , , a 2 , ~ 3 , ~ 4 )  = (1.0,0.8751,0.6603,0.5799), N = 8 

corresponding to a sidelobe level of 1/R = 0.1 or 20 log (1/R) = 

To be able to exactly reproduce the 112 spacing in an optimiza- 
tion process we have to sample the pattern  at the angles 0,' 
where the optimum pattern  attains its maximum sidelobe levels. 
These angles are calculated by the  formula 

- 20 dB. 

O0 450 e goo 

Fig. 2. Optimization of eight-element  Dolph-Chebyshev  array.  Initial 
patterns at starting poinfs ( ~ 1 ~ 2 ~ x 3 )  = (0.1,0.2,0.2) and (0.1,0.8,0.8). 
Optimum  pattern at solut~on (0.25,0.5,0.5). 

TABLE I 
OPTIMIZATION OF N-ELEMENT  DOLPH-CHEBYSHEV ARRAYS m i  

-20 DB SIDELOBE  LEVEL 

(a) X = 6 

Initial values Number o f  pattern evaluations 

x1  x2 Max. residual 
PI Dl cdB7 
0.1 0.2 -3.743 10  10  11 
0.1 0.8 -3.681 10 11 11 
0.4 0.2 -4.148 8 8 10 
0.4 0.8 -8.678 13  14  16 

(b) X = 8 

Initial values Number o f  pattern evaluations n 
N - 1  x1 3 x3 Max. residual 

&=lo-* 6 ~ 1 0 - ~   6 = w 4  
N PI Dl Dl P I  

p = 091, 

p = OJ,.  * -, - Nodd. (14) 0.1 0.2 0.8 -6.362  12  12  14 

- * '  Z' N even 
0.1 0.2  0.2  -4.408  14  14 15 

+- 

2 ,  0.1 0.8 0.2 -3.630 9 14  17 

We also insert additional sample points at essentially 5" spacing 
so that for N = 6 we sample at the angles (0,,8,,. . .,Om) given 

a 0.1 0.8 0.8 -7.505 20 21  23 
0.4 0.2 0.2 -2.867 11  14  14 
0.4 0.2 0.8 -3.270 12  14  14 
0.4 0.8 0.2 -8.185 12  15 17 by 

(21.11,25.0,31.43,35.0,40.0;~ .,56.30,. . .,90.0), m = 15, b 0.4 0.8 0.8 -la436 Convergence to local optimum 

and for N = 8 at the angles given  by 

(15.32,20.0,22.52,30.0,37.84,40.0,45.0,* .,60.40; * .,90.0), 

m = 16. 

In Table  I(a) and (b)  the number of pattern evaluations required 
to exceed a specified accuracy 6 is given for different starting 
values of the element  spacing^.^ 6 is  defined  by 

6 = max ~ 

xi - xi 

lsisn I xi *I (15) 

where x* = (0.25,0.50) for N = 6 and x* = (0.25,0.50,0.50) for 
N = 8. From Fig. 2 it is  seen that the starting points chosen 
represent patterns that  are considerably different from that of 
the optimum Dolph-Chebyshev pattern. 

1906s computer. 
These examples were  run in double  precision  Fortran IV on an 1cL 

a*b See text for explanation. 

A few comments to the entries a and b in Table  I(b) are neces- 
sary. Using the sample points previously mentioned the optirniza- 
tion process converged to  an improper local optimum for which 
5, was larger than i.e., the array elements were no longer 
correctly ordered. It was then decided to use much denser sample 
points, namely, 

(15.32,16.0,17.0,~~~,22.0,22.52,24.0,~~~,37.0,37.84~39.0,~~~, 

59.0,60.40,61.0,* -,89.0,90.0), m = 76 

whereupon the correct optimum was obtained with starting 
point a as stated in Table I(b) while starting point b still produced 
the local optimum.  Starting point b is characterized through an 
initially incorrect ordering of the elements and is thus extremely 
badly chosen. This serves as  an indication of the importance of 
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TABLE I1 
OPTIhilZATION OF UNEQUALLY SPACED SYMMETRIC N-ELINEIUT LTPI'EAR BROADSIDE ARRAYS 

Optimized  values First null b e d  

X 1  x2 x3 x4 x5 '6 Max* Optimized  Chebyshev 
PI Dl CKI Dl LA1 Dl Dl Npat array  array 

___ ~~ 

4 12 0.19548 -15.496 - 32.0 34.053 
6 17 0.22805 0.42630 -16.914 - 21.0  21.937 
8 23 0.18964 0.45393 0.47595  -18.393 - 16.0 16.558 

10 27 0.21464 0.38517 0.46147 0.52586 -19.719 - 13.0 13.468 
12 31 0.18461 0.41678 0.41094  0.46928 0.57331  -20.911 - 11.5 11.446 
14 33  0.18837  0.39646  0.39410 0.44854 0.47684 0.61774 -21.998 - 10.0 10.012 

(b) N odd 
~ 

Optimized values First null  [ded 

X 1  x2 x3 x4  x5 '6 Max' Optimized  Chebyshev 
PI CAI CAI CAI CAI PI P I  Npat array  array 

5 10 0.47097 -13.618 - 24.5  25.529 
7 20 0.43198 0.49355 -16.321 - 18.0 18.053 
9 24 0.41587  0.43649  0.52782 -18.348 - 14.5  14.509 

11 3 1  0.39784 0.42441 0.44984 0.56474 -20.013 - 12.0  12.247 
13 35 0.39402 0.39114 0.44346  0.46529 0.60201 -21,324 - 10.5 10.630 
15 39  0.37362  0.41130 0.38244 0.46963  0.47979  0.63953 -22.490 - 9.5 9.438 

choosing  good  starting  points in optimization problems  where 
local  optima may  occur. 

The general trend  in  Tsble I is,  however, that convergence to 
the minimax optimum is obtained to a high degree of accuracy 
with  a  very  limited number of pattern evaluations. The test 
examples  considered may serve as a future basis of comparison 
with other minimax optimization algorithms. 

VI. OPTIMIZATION OF NONU~XFORMLY SPACED ARRAYS 
We  now  consider  N-element arrays  with uniform excitation, 

i.e., all excitation  coefficients ai are chosen equal to unity. From 
a technical  point of view,  uniform  excitation  is  much  simpler to 
realize than  the Dolph-Chebyshev  excitation or any  other tapered 
excitation. Again the element  spacings as defmed  by (1 1) are  the 
optimization  parameters.  The  patterns are sampled in steps of 
OS", B1 being  chosen sufficiently small to ensure  that all sidelobes 
are included. If we take  the case  with N = 15, O1 has been  chosen 
to 9" and consequently the  number of sample points m = 163. 

A series of pattern synthesis  examples has been carried out 
with Nranging from 4 to 15. For each N we start  the  optimization 
from a 1.12 - spaced array4  and continue  the  iterations until 

llhill < 10-611-%+lll (1 6 )  

which  produces  sidelobes that  are identical to approximately 
10 significant digits. 

Results are presented in Table TI(a) for N  even and in  Table 
II(b)  for AT odd. The number of required antenna  pattern evalua- 
tions  NPat is seen to be very moderate,  one  pattern  evaluation 
corresponding to one evaluation of (12) for j = 1,2,. ,m, i.e., 

a priori knowledge of the  optimum  element  distribution. 
These  starting  points  seem to be  the  most  natural  since  we  have no 

evaluation of  (10) for m + 1 values of 0. For N = 15 the 
optimization required a total  CPU time of  5.6 s using double 
precision Fortran IV on an IBM 370/175  machine. Of this time, 
1.8 s were spent  computing  the residuals  (12), and 2.4 s were 
spent  solving the  linear  subproblems (6). Fig. 3 shows the optim- 
ized radiation  patterns as well as  the initial patterns  for N even, 
and Fig. 4 shows the corresponding patterns  for N odd. 

To give an impression of the overall  convergence, the max- 
imum value of the residuals  (12)  is  plotted in Fig. 5 as a function 
of the  number of pattern evaluations for N = 14 and 15. -The 
plateau on both curves at  the beginning is a result of initially 
approximating  the derivative matrix Bk by finite differences. 
This requires n + 1 pattern  evaluations  in which  improvement 
on the maximum  residual 'is not  attempted. 

Some  comments on  the results are in order. In Table I1 the 
position  of the first null for  the optimized patterns as found by 
inspection  of Figs. 3 and 4 is compared to the position of the 
first null for a 4 2  - spaced  Dolph-Chebyshev array with the 
same  number of elements,  same total length, and same sidelobe 
level [l?].  It is interesting to observe that  the optimized patterns, 
although presumably not being  expressible in terms of Chebyshev 
polynomials,  exhibit in general main beam  widths  very  close 
to those of the conventional arrays. 

The initial patterns  for N even  have,  by  obvious reasons, nulls 
in the direction 8 = 90". In all cases  considered,  however, an 
extra sidelobe  developed  in that direction during the optimization, 
such that  the  total number of (equal)  sidelobes  became n + 1. 
The initial patterns  for N odd  have, of course, a sidelobe in the 
direction 8 = 90". During  the  optimization  this  particular side- 
lobe is shifted in  position and  the final pattern  ends  up with 
n + 1 sidelobes. These  observations  agree  with fundamentals 
from minimax approximation  theory according to which  solu- 
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Fig. 3. Initial  patterns  (dashed)  and  optimized  patterns (solid) of 
unequally  spaced  symmetric N-element linear  broadside  arrays, N even. 

tions to regular  minimax  problems  with n variables attain  their 
maximum  errors in n + 1 points. 

One  might ask  the  question: are  the element positions pre- 
sented in Table I1 unique or might other  combinations of posi- 
tions exist that would produce  the  same or even  lower  sidelobes? 
We do  not have any final answer to this question.  We  have good 
reasons, though, to believe that the  solutions are unique. For 
selected  examples it has been tried, by choosing  other initial 
configurations, to find other solutions. In all cases, however, the 
algorithm came out with the  solutions in Table 11. 

VII. DIScuSSION 

If the element  spacing in unequally  spaced arrays gets too small, 
unwanted  coupling  between the elements may arise. The closest 
spacing in the optimized arrays presented in Table I1 is  seen to 
be  0.37362  which  occurs  when hT = 15. It is  therefore  relevant 
to try to develop  minimax optimization  methods which  allow for 
constraining  the  optimization  parameters to be  larger than a 
certain  value, or more general, to lie between  preassigned limits 
ai and bi 

a, I xi I bi, i = 1,2,. - *,n. (17) 

The algorithm presented in this  paper seems to be  particularly 
suitable  for such an extension  since constraints of the type  (17) 
are inherently  used  when  solving the linearized subproblems (6). 

The present algorithm may also be  applied to sidelobe  mini- 
mization  with thinned  arrays. However,  it is to be  remembered 
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unequally  spaced  symmetric N-element linear  broadside  arrays, N odd. 
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Fig. 5. Maximum  residual  (sidelobe level) as function of number of 
pattern  evaluations for AT = 14 and 15. 

that with n variables  only n + 1 sidelobes are likely to be 
equalized in the minimax optimum. Since the  number of side- 
lobes in thinned  arrays is much  larger than n + 1, one  can easily 
imagine that there exist many different combinations of element 
spacings that  produce n + 1 equal sidelobes. In  other words, 
extreme caution has  to be taken  against  local  minima. Actually 
we have reconsidered the 19E. aperture  array with 9 elements 
(Le., three  variable element  spacings)  which Lo and Lee [I41 
optimized by “total enumeration.” By sampling  the  pattern in 
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145 equidistantly spaced  sample  points  in the interval 0.052632 s 
u I 1.94737, and  starting  out  from their best solution x = 
(0.5,2.0,1.5), virtually no improvement  was obtained.  This was 
to be expected  since the initial pattern  contains  already  about 
10 almost  equal sidelobes [14, Fig. 31. Choosing  other  starting 
points  our  algorithm converged to a number of local minima.3 

VIII. CONCLUSION 

The general  minimax antenna  pattern synthesis  problem has 
been formulated and a new nonlinear  optimization  algorithm 
with  super-linear final convergence  is proposed for its  solution. 
Not requiring  derivative evaluation, the proposed  method is 
easily applied to synthesis  problems  with  complicated pattern 
calculations. In this  paper, Dolph-Chebyshev arrays were con- 
sidered for testing purposes and  also applications to sidelobe 
minimization in unequally  spaced linear  arrays with up  to 15 
elements  by spacing  variation  demonstrate that  the  approach 
is very  efficient and reliable. The optimized patterns are compared 
to conventional  Chebyshev patterns  and  are shown to be com- 
parable  in  terms of main beamwidth for  the same  sidelobe  level. 
Local minima in conjunction with  sidelobe  minimization have 
been  discussed. 

It is  believed that  the present method will  find  wide-spread 
future  applications  in solving pattern synthesis  problems that 
hitherto  have been approached by  cut-and-try  methods. 
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Horizontally Polarized Waves in Inhomogeneous Media- 
Energy  Conservation and Reciprocity  Relationships 

Abstract-Full  wave solutions for the electromagnetic fields of a 
horizontally polarized wave  propagating  through an inhomogeneous 
ionized medium are derived  using a generalized \ W E  method. Both  the 
electron density and the  collision frequency of the horizontally stratified 
media are assumed to vary  and special attention is given to permittivity 
profiles with critical coupling regions. The reflection and transmission 
coefficients and the characteristic surface impedance for an  inhomo- 
geneous layer of finite thickness are computed as functions of the 
transverse  wave  number  for  various permittivity profiles. Excitation  of 
both  propagating  and  evanescent  waves are considered.  For some 
special permittivity profiles considered, closed form analytical solutions 
for the electromagnetic fields are known. Computations  derived  from 
these solutions are in good  agreement  with those obtained  using the 
generalized \VKB method. The results are  also shown to satisfy  energy 
conservation  and reciprocity relationships in electromagnetic theory. 

I. INTRODUCTION 

Considerable effort has been made to derive full wave solutions 
for  the electromagnetic fields in horizontally stratified media in 
terms of mathematical  functions  tabulated  in  handbooks 
[1]-[6]. While  they do  not provide  solutions to the general 
problem in which the complex  permittivity  of the media is 
assumed to vary arbitrarily, they provide an important basis 
for  the analysis  of  electromagnetic  waves in inhomogeneous 
media. Thus using the Green’s function technique, for instance, 
the solutions are formulated  in  terms of integral  equations 
involving comparison  functions  that are chosen from  the list of 
permittivity profiles for which  closed form  analytical  solutions 
are known [7]. 

The method employed in  this  paper to compute  horizontally 
polarized  electromagnetic  fields in an ionized  media  with varying 
electron  density and collision frequency profles is based on  the 
conversion of  Maxwell’s equations  into a set of loosely  coupled 
first-order differential equations  for the wave amplitudes [8]. 
Special attention is  given to permittivity profiles with critical 
coupling  regions  where the familiar WKB approach fails. 

The reflection and transmission  coefficients and  the  character- 
istic surface  impedance for a  horizontally stratified layer of 
finite thickness is computed as a function of the transverse  wave 
number and excitations of both  propagating and evanescent 
waves are considered. 

The reciprocity and realizability relationships are formulated 
and  the numerical results are in agreement up  to  at least four 
significant figures. The computed values for  the reflection and 
transmission  coefficients and  the characteristic surface impedance 
are also shown  to be  in good agreement  with those derived from 
closed form  analytical  solutions for special permittivity  profiles. 

11. FORMULATION OF THE PROBLEM 

The electromagnetic  fields due to  an electric line  source 
J ( i )  = J,(x,z)li, parallel to a horizontally stratilied dielectric 
E(Z) can be  expressed in terms of a complete spectrum of hor- 
izontally polarized  waves (see Fig. 1). Employing the Fourier 
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