
IMM
INFORMATICS AND MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Kongens Lyngby – Denmark

ROBUST C SUBROUTINES
FOR NON-LINEAR

OPTIMIZATION

Pernille Brock

Kaj Madsen

Hans Bruun Nielsen

Revised version of report NI-91-03

IMM-Technical Report-2004-21

IMM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13700798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1. Introduction 5

1.1. Problem Formulation 5

1.2. Checking the Gradients 6

1.3. Examples . 9

1.4. Test Functions . 11

1.5. Modifications . 12

1.6. Package overview . 13

2. Unconstrained Optimization 14

2.1. MI1F. Minimization of a Scalar Function 14

2.2. MI1L2. Minimization of the ℓ2-Norm of a
Vector Function (Least Squares) 20

2.3. MI1L1. Minimization of the ℓ1-Norm of a
Vector Function . 27

2.4. MI1INF. Minimization of the ℓ∞-Norm of a
Vector Function . 34

3. Constrained Optimization 41

3.1. MI1CF. Constrained Minimization of a Scalar Function 41

3.2. MI1CL1. Linearly Constrained Minimization
of the ℓ1-Norm of a Vector Function 49

3.3. MI1CIN. Linearly Constrained Minimax
Optimization of a Vector Function 57

References 67

1. Introduction

This report presents a package of robust and easy-to-use C subrou-
tines for solving unconstrained and constrained non-linear optimiza-
tion problems. The intention is that the routines should use the cur-
rently best algorithms available. All routines have standardized calls,
and the user does not have to worry about special parameters control-
ling the iterations. For convenience we include an option for numerical
checking of the user’s implementation of the gradient.

Note that another report [3] presents a collection of robust sub-
routines for both unconstrained and constrained optimization but not
requiring gradient information. The parameter lists for the subrou-
tines in both collections are similar so it is easy to switch between
the gradient and the non-gradient methods. All of the subroutine
names in this report start with MI1. The coresponding names of the
non-gradient subroutines are obtained by changing 1 to 0.

The present report is a new and updated version of a previous
report NI-91-03 with the same title, [16]. Both the previous and the
present report describe a collection of subroutines, which have been
translated from Fortran to C. The reason for writing the present report
is that some of the C subroutines have been replaced by more effective
and robust versions translated from the original Fortran subroutines
to C by the Bandler Group, see [1]. Also the test examples have been
modified to some extent. For a description of the original Fortran
subroutines see the report [17]. The software changes are listed in
Section 1.5.

1.1. Problem Formulation

We consider minimization of functions of vector arguments, F :
IRn 7→ IR. The function may be a norm of vector valued function
f : IRn 7→ IRm. For the scalar case the user must provide a subrou-
tine, which – for a given x – returns both the function value F (x) and

6 1.2. Gradient Check

the gradient g(x) ∈ IRn, defined by

g =

∂F

∂x1
...
∂F

∂xn

. (1.1)

In case of a vector function the user’s subroutine must return the
vector f(x) and the Jacobian matrix J(x) ∈ IRm×n, defined by

J =

∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm

∂x1
· · · ∂fm

∂xn

, (1.2)

i.e., the ith row in J is the gradient of fi, the ith component of f .

For an efficient performance of the optimization algorithm the
function and the gradients must be implemented without errors. It
is not possible to check the correctness of the implementation of F
(or f), but we provide the possibility of checking the corresponding
gradient (or Jacobian).

1.2. Checking the Gradients

This is done by difference approximations. First, consider a scalar
function F (x): For given x and step length h we compute

DF
j =

(
F (x+hej) − F (x)

)
/h

DB
j =

(
F (x) − F (x−1

2hej)
)
/(1

2h)

DE
j =

(
DF

j + 2DB
j)

)
/3

, j=1, . . . , n , (1.3)

where ej is the jth unit vector (the jth column of I), and the su-
perscripts stand for Forward, Backward and Extrapolated difference
approximation, respectively.

We assume that F is three times continuously differentiable with
respect to each of its arguments. Then a Taylor expansion from x

1. Introduction 7

shows that

F (x) + ηej) = F (x) + η
∂F

∂xj

(x) + 1
2η

2 ∂
2F

∂x2
j

(x) + O(η3)

= F (x) + ηgj(x) + η2Sj(x) + O(η3) . (1.4)

Inserting this in (1.3) we see that

DF
j = gj + hSj + O(h2)

DB
j = gj − 1

2hSj + O(h2)

DE
j = gj + O(h2)

with Sj = 1
2

∂2F

∂x2
j

(x) . (1.5)

Now, let Gj denote the jth component of the gradient as returned
from the user’s subroutine, and let

Gj = gj − ψj , (1.6)

where ψj = ψj(x) is zero if the implementation is correct. Inserting
this in (1.5) we get

δF
j ≡ DF

j −Gj = ψj + hSj + O(h2) ,

δB
j ≡ DB

j −Gj = ψj − 1
2hSj + O(h2) ,

δE
j ≡ DE

j −Gj = ψj + O(h2) .

(1.7)

If ψj = 0, Sj 6= 0 and h is so small that the last term in each
right-hand side of (1.7) can be neglected, then we can expect δB

j ≃
− 1

2δ
F
j and δE

j to be of the order of magnitude (δF
j)2. Also, if the

approximation is recomputed with h replaced by θh, where 0 < θ < 1,
then both δF

j and δB
j are reduced by a factor θ, while δE

j is reduced

by a factor θ2.

If ψj 6= 0 and h is sufficiently small, then the error will be recog-
nized by δF

j ≃ δB
j ≃ δE

j ≃ ψj .

The computed values are affected by rounding errors. Especially,
instead of F (z) we get fl(F (z)) = F (z) + ε. The best that we can
hope for is that |ε| ≤ u · |F (x)|, where u is the “unit round-off”.
(The subroutines use double corresponding to u = 2−53 ≃ 10−16 on
most computers). This has the consequence that for the computed

8 1.2. Gradient Check

difference approximations (1.7) should be replaced by

|δF
j | ≤ |ψj + hSj | +Ajh

−1 + O(u) + O(h2) ,

|δB
j | ≤ |ψj − 1

2hSj | +Ajh
−1 + O(u) + O(h2) ,

|δE
j | ≤ |ψj | +Bjh

−1 + O(u) + O(h2)) ,

(1.8)

where Aj and Bj are positive values, that depend on F and x, but
not on h. In the case of correct implementation of the gradient, (1.8)
shows that for large h the errors are dominated by truncation error,
while effects of rounding errors dominate if h is too small. Assuming
that |Sj| and Aj are of the same order of magnitude, the smallest error
with the forward and backward difference approximations is obtained
with h ≃ √

u‖x‖. Similarly, we can expect that |δE
j | is minimal for

h ≃ 3
√
u‖x‖.

In order to enhance accuracy the one-sided difference approxima-
tions in (1.3) should be computed by the formulae

DF
j =

F (x+hej) − F (x)

ĥj

, DB
j =

F (x) − F (x− 1
2hej)

h̃j

, (1.9a)

where ĥj and h̃j are the actual steps,

ĥj = fl
(
fl(xj+h) − xj

)
, h̃j = fl

(
xj − fl(xj− 1

2h)
)
. (1.9b)

Note that if |h| is too small, then we get ĥj = 0 and/or h̃j = 0. In
that case the gradient checker gives an error return.

The subroutines MI1F and MI1CF deal with scalar functions of
vector variables. If they are called with the option of checking the
gradient, then they return {δA

j , j
A} defined by

jA = argmax
j = 1, . . . , n

{|δA
j |}, δA = δA

jA (1.10)

for A = F,B,E, i.e. δA is the extreme value and jA is its position.

The other subroutines deal with problems where F (x) is some
norm of a vector function f(x). In this case it is relevant to check
the implementation of the Jacobian J(x), (1.2). The ith row in J

is the gradient of fi, the ith component of f , and a straightforward

1. Introduction 9

generalization of (1.3) is

DF
ij =

(
fi(x+hej) − fi(x)

)
/h

DB
ij =

(
fi(x) − fi(x− 1

2hej)
)
/(1

2h)

DE
ij =

(
DF

ij + 2DB
ij

)
/3

,

{
i=1, . . . ,m
j=1, . . . , n

, (1.11)

leading to

δF
ij ≡ DF

ij − Jij = ψij + hSij + O(h2) + O(uh−1) ,

δB
ij ≡ DB

ij − Jij = ψij − 1
2hSij + O(h2) + O(uh−1) ,

δE
ij ≡ DE

ij − Jij = ψij + O(h2) + O(uh−1) ,

(1.12)

where Jij is the (i, j)th element in the implemented Jacobian, ψij is
its error and Sij = 1

2∂
2fi/∂x

2
j . If the subroutines are called with the

option of checking the Jacobian, they return δA, iA, jA for A = F,B,E
defined as in (1.10).

1.3. Examples

First, consider the scalar problem (n=2)

F (x) = cosx1 + e2x2 , g(x) =

[
− sinx1

2e2x2

]
, (1.13)

implemented by the subroutine (note the sign error in g1)

void fdf (const int *n, const double x[], double df[], double *f)

/* Scalar function with gradient error */

{

double cexp;

cexp = exp(2.0 * x[1]);

*f = cos(x[0]) + cexp;

df[0] = sin(x[0]);

df[1] = 2.0 * cexp;

}

If we call e.g. MI1F with the checking option with the point x =
[1, 1]⊤ and h = 10−3, we get the results

10 1.3. Examples

h |δF | jF |δB| jB |δE | jE

1.0e+00 2.40e+02 2 -4.02e+01 2 5.31e+01 2
1.0e-01 1.17e+01 2 -5.28e+00 2 3.74e-01 2
1.0e-02 1.10e+00 2 -5.44e-01 2 3.65e-03 2
1.0e-03 1.09e-01 2 -5.46e-02 2 3.64e-05 2
1.0e-04 1.09e-02 2 -5.46e-03 2 3.64e-07 2
1.0e-05 1.09e-03 2 -5.46e-04 2 2.67e-09 2
1.0e-06 1.09e-04 2 -5.46e-05 2 6.93e-09 2
1.0e-07 1.07e-05 2 -5.75e-06 2 -3.48e-07 2
1.0e-08 6.46e-07 2 -1.49e-06 2 -1.49e-06 2
1.0e-09 1.41e-05 2 7.04e-06 2 7.04e-06 2
1.0e-10 4.97e-05 2 -9.58e-05 1 -9.58e-05 1
1.0e-11 6.18e-04 2 1.88e-04 1 1.33e-03 2
1.0e-12 1.41e-02 2 3.03e-03 1 1.41e-02 2

Table 1.1. Gradient check with varying h

max|df| = 1.0920e+02, δF = -1.6832E+00, F = 1 ,
δB = -1.6828E+00, B = 1 ,
δE = -1.6829E+00, E = 1 ,

indicating an error in the first element of the computed gradient. After
correcting the error we get

δF = 1.0927e-01, δB = -5.4580e-02, δE = 3.6408e-05

and jF = jB = jE =2. This agrees with expectation: δB ≃ − 1
2δ

F and
δE is orders of magnitude smaller.

To illustrate the behaviour for varying step length we give re-
sults in Table 1.1 for the extreme values of of the differences for
h = 1, 10−1, · · · , 10−12.

For large values of h (the first two rows) the results are dominated
by truncation error. Then follows a series of results where the δA be-
have as described above and δA(0.1h) ≃ 0.1δA(h) for the forward
and backward approximation, while δE(0.1h) ≃ 0.01δE(h). Finally,
for the smallest h-values rounding errors dominate. For the one-sided
approximations this happens for h ≃ 10−8 ≃ √

u and for the extrap-
olated approximation the turning point is h ≃ 10−5 ≃ 2 3

√
u, where

u = 2−53 ≃ 10−16 is the unit round-off used for the computations.

1. Introduction 11

This agrees with the discussion after (1.8).

1.4. Test Functions

Many of the examples in this report use the following set of functions,
f : IR2 7→ IR3, originally given by Beale [2],

f1(x) = 1.5 − x1(1 − x2)

f2(x) = 2.25 − x1(1 − x2
2)

f3(x) = 2.625 − x1(1 − x3
2)

(1.14)

12 1.5. Modifications

1.5. Modifications

The following modifications were made compared with the previous
version of the package described in [16],

1◦ The descriptions of the algorithms have been modified to a certain

extent.

2◦ The test examples and results have been updated.

3◦ In the package is included makefiles for a UNIX platform, linking

the files in the respective directories. These makefiles must be

modified by the user, if the subroutines should work on a differ-

ent platform. A succesful linkage and compilation relies on the

existence of the header file f2c.h in the parent directory.

4◦ The subroutine MI1CIN and the auxiliary functions called from

this subroutine have been replaced by more effective and robust

versions, compared to the previous package. The new versions

have been translated from Fortran to C by the Bandler Group,

see [1].

5◦ The functions used for checking the user-implemented gradients

have been modified such that the three maximum errors are re-

turned as signed values.

1. Introduction 13

1.6. Package overview

The package contains the following subroutines:

MI1F: Unconstrained minimization of a scalar function.

Origin: VA13CD, [14].

MI1L2: Unconstrained minimization of the ℓ2-norm of a vector func-
tion (least squares).

Origin: NL2SOL, [5] and [6].

MI1L1: Unconstrained minimization of the ℓ1-norm of a vector
function.

Origin: L1NLS, [11].

MI1INF: Unconstrained minimization of the ℓ∞-norm of a vector
function.

Origin: SUB1W, [15].

MI1CF: Minimization of a non-linear function subject to non-linear
constraints (mathematical programming).

Origin: VF13AD, [19].

MI1CL1: Linearly constrained minimization of the ℓ1-norm of a vector
function.

Origin: L1NLS, [11].

MI1CIN: Linearly constrained minimax optimization of a vector
function.

Origin: MLA1QS, [10] translated from Fortran to C by the
Bandler Group, [1].

14 2.1. MI1F

2. Unconstrained Optimization

2.1. MI1F. Minimization of a Scalar Function

Purpose. Find x∗ that minimizes F (x), where x = [x1, . . . , xn]⊤ ∈
IRn is the vector of unknown parameters and the scalar objective func-
tion F is twice continuously differentiable. The user must supply a
subroutine that evaluates F (x) and the gradient g(x). There is an
option for checking the implementation of g.

Method. The algorithm is a quasi-Newton method with BFGS up-
dating of the inverse Hessian1) and soft line search,, see e.g. [7, Chap-
ters 9 (and 6)] or [18, Chapters 3, 4 and 8].

Origin. MI1F uses a modified version of the subroutine VA13CD from
[14], modified such that it is consistent with the other routines in
this package. In the Harwell Library VA13CD is called from the driver
routine VA13AD.

Use. The subroutine call is

mi1f(fdf,n,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

fdf Subroutine written by the user with the following declaration

void fdf(const int *N, const double x[],

double df[], double *f)

It must calculate the value of the objective function and its
gradient at the point x = [x[0], . . . , x[n-1]]⊤, n = *N, and
store these numbers as follows,

*f = F (x),

df(j-1) =
∂F

∂xj
(x), j = 1, . . . n.

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

1) The Hessian H(x) is the matrix of second derivatives, Hij =
∂2F

∂xi∂xj

.

2. Unconstrained Optimization 15

x double array with n elements. The use depends on the entry
value of icontr.

icontr > 0 : On entry: Initial approximation to x∗.
On exit : Computed solution.

icontr ≤ 0 : Point at which the Jacobian should be checked.
Is not changed.

dx double. The use depends on the entry value of icontr.

icontr > 0 : dx does not enter into the computations.

icontr ≤ 0 : Gradient check with dx used for h in (1.3).
Must be positive. Is not changed.

eps double. Desired accuracy.
Used only if the entry value of icontr is positive. The algo-
rithm stops when it suggests to change the iterate from xk

to xk+hk with ‖hk‖ < eps·‖xk‖. Must be positive. Is not
changed.

maxfun integer. Used only if the entry value of icontr is positive.
On entry: Upper bound on the number of calls of fdf.

Must be positive.

On exit : Number of calls of fdf.

w double array with iw elements. Work space.
On entry: The values of w are not used.

On exit with icontrentry > 0:
w[0] = F (X), the computed minimum.

On exit with icontrentry ≤ 0: Results of the gradient check
are returned in the first 7 elements of w as follows, cf. (1.10)

w[0] Maximum element in |df|.
w[1], w[4] δF and jF .
w[2], w[5] δB and jB.
w[3], w[6] δE and jE .

In case of an error the indices w[4..6] point out the erroneous
gradient component.

iw integer. Length of work space w.
Must be at least 1

2n(n+15) + 1. Is not changed.

icontr integer.
On entry: Controls the computation,

16 2.1. MI1F

icontr > 0 : Start minimization.

icontr ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
icontr = 0 : Successful call.
icontr = 2 : Iteration stopped because the maximum num-

ber of calls to fdf was exceeded, see parameter
maxfun.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −4 : dx ≤ 0.0
icontr = −5 : eps ≤ 0.0
icontr = −6 : maxfun ≤ 0
icontr = −8 : iw < 1

2n(n+15) + 1

Example. Minimize

F (x) = sin(x1x2) + 2ex1+x2 + e−x1−x2 .

#include <stdio.h>

#include "math.h"

#include "f2c.h"

/* TEST OF MI1F 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void fdf(const int *N, const double x[],

double df[], double *f)

{

double ccos, cexp;

/* Function Body */

ccos = cos(x1 * x2);

cexp = exp(x1 + x2);

*f = sin(x1 * x2) + cexp * 2 + 1 / cexp;

df[0] = x2 * ccos + cexp * 2 - 1 / cexp; /* df/dx1(x) */

2. Unconstrained Optimization 17

df[1] = x1 * ccos + cexp * 2 - 1 / cexp; /* df/dx2(x) */

} /* fdf */

static int opti(int icontr)

{

#define N 2

#define IW N*(N+15)/2 + 1

extern void mi1f(

void (*fdf)(const int *n, const double x[],

double df[], double *f),

int n,

double x[],

const double *dx,

const double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i, j, k;

double w[IW], x[2];

int index[4], optim, maxfun;

double dx, eps;

/* SET PARAMETERS */

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 2.;

/* GRADIENT CHECK OR MINIMIZATION */

optim = icontr > 0;

dx = .001;

mi1f(fdf, N, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d "

"IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

if (! optim) {

/* RESULTS FROM GRADIENT TEST */

for (k = 1; k < 4; ++k) {

index[k] = (int) w[k + 3];

18 2.1. MI1F

}

printf("TEST OF GRADIENTS\n\n");

printf("MAXIMUM FORWARD DIFFERENCE: %8.2e at Variable No %d\n",

w[1],index[1]);

printf("MAXIMUM BACKWARD DIFFERENCE: %8.2e at Variable No %d\n",

w[2],index[2]);

printf("MAXIMUM CENTRAL DIFFERENCE: %8.2e at Variable No %d\n",

w[3],index[3]);

printf("\nMAXIMUM ELEMENT IN DF: %8.2e\n",w[0]);

}

else {

/* RESULTS FROM OPTIMIZATION */

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

printf("ITERATION SUCCESSFUL\n\n");

break;

case 2:

printf("NB: MAXIMUM NUMBER OF FUNCTION EVALUATIONS EXCEEDED\n\n");

break;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("SOLUTION: %18.10e\n",x[0]);

for (j = 1; j < N; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",x[j]);

}

printf("NUMBER OF CALLS OF FDF: %d\n\n", maxfun);

printf("FUNCTION VALUE AT THE SOLUTION: %18.10e\n",w[0]);

}

return 0;

}

int main()

{

opti(0); /* check gradients */

opti(1); /* optimize */

return 0;

}

2. Unconstrained Optimization 19

We get the results

TEST OF GRADIENTS

MAXIMUM FORWARD DIFFERENCE: 1.97e-02 at Variable No 2

MAXIMUM BACKWARD DIFFERENCE: -9.83e-03 at Variable No 2

MAXIMUM CENTRAL DIFFERENCE: 3.62e-06 at Variable No 1

MAXIMUM ELEMENT IN DF: 3.97e+01

RESULTS FROM OPTIMIZATION

ITERATION SUCCESSFUL

SOLUTION: -1.4385237849e+00

1.0919501946e+00

NUMBER OF CALLS OF FDF: 19

FUNCTION VALUE AT THE SOLUTION: 1.8284271247e+00

The results indicate that there is no error in the gradient.

20 2.2. MI1L2

2.2. MI1L2. Minimization of the ℓ2-Norm of a
Vector Function (Least Squares)

Purpose. Find x∗ that minimizes F (x), where

F (x) = 1
2

m∑

i=1

(fi(x))
2
. (2.1)

Here x = [x1, . . . , xn]⊤ ∈ IRn is the vector of unknown parameters
and fi, i=1, . . . ,m is a set of functions that are twice continuously
differentiable. The user must supply a subroutine that evaluates f (x)
and the Jacobian J(x). There is an option for checking the implemen-
tation of J.

Method. The algorithm amounts to a variation on Newton’s method
in which part of the Hessian matrix is computed exactly and part is
approximated by the secant (quasi-Newton) updating method. Once
the iterates come sufficiently close to a local solution, they usually
converge quite rapidly. To promote convergence from poor starting
guess, the algorithm uses a model/trust region technique along with
an adaptive choice of the model Hessian. Consequently, the algo-
rithm sometimes reduces to a Gauss-Newton or Levenberg-Marquardt
method (see e.g. [8, Section 5.2]). On large residual problems (in
which F (x∗) is large), the present method often works much better
than these methods. The algorithm is described in [5] and [6].

Origin. Subroutine NL2SOL from [5] and [6]. Available from Netlib.

Use. The subroutine call is

mi1l2(fdf,n,m,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

2. Unconstrained Optimization 21

fdf Subroutine written by the user with the following declara-
tion

void fdf(const int *N, const int *M,

const double x[],

double df[], double f[])

It must calculate the values of the functions and their gra-
dients at the point x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M

and store these numbers as follows,
f[i-1] = fi(x), i=1, . . . , m,

df[(j-1)m+(i-1)] =
∂fi
∂xj

(x),

{
i = 1, . . . ,m
j = 1, . . . ,n

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

x double array with n elements. The use depends on the entry
value of icontr.

icontr > 0 : On entry: Initial approximation to x∗.
On exit : Computed solution.

icontr ≤ 0 : Point at which the Jacobian should be checked.
Is not changed.

dx double. The use depends on the entry value of icontr.

icontr > 0 : dx does not enter into the computations.

icontr ≤ 0 : Gradient check with dx used for h in (1.3).
Must be positive. Is not changed.

eps double. Used only if the entry value of icontr is positive.
On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖. Must be positive.
On exit : If eps was chosen too small, then the iteration stops
when there is indication that rounding errors dominate, and
eps is set to 0.0. Otherwise not changed.

maxfun integer. Used only if the entry value of icontr is positive.

22 2.2. MI1L2

On entry: Upper bound on the number of calls of fdf.
Must be positive.

On exit : Number of calls of fdf.

w double array with iw elements. Work space.
Entry values are not used.
Exit values depend on the entry value of icontr.

icontrentry > 0 : The function values at the computed so-
lution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

icontrentry ≤ 0 : Results of the gradient check are returned
in the first 10 elements of w as follows, cf. (1.10)

w[0] Maximum element in |df|.
w[1], w[4], w[5] δF , iF , jF .
w[2], w[6], w[7] δB, iB, jB.
w[3], w[8], w[9] δE , iE , jE .

In case of an error the indices point out the erroneous element
of the Jacobian matrix.

iw integer. Length of work space w.
Must be at least m(2n+4)+ 1

2n(3n+33)+93. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr > 0 : Start minimization.

icontr ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
icontr = 0 : Successful call.
icontr = 1 : Successful call.
icontr = 2 : Iteration stopped because the maximum num-

ber of calls of fdf was exceeded, see parameter
maxfun.

2. Unconstrained Optimization 23

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −5 : dx ≤ 0.0
icontr = −6 : eps ≤ 0.0
icontr = −7 : maxfun ≤ 0
icontr = −9 : iw < m(2n+4) + 1

2n(3n+33) +
93

Example. Minimize

F (x) = 1
2

3∑

i=1

f2
i (x) ,

where the fi are given by (1.14), page 11.

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI1L2 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void fdf(const int *n, const int *m, const double x[],

double df[], double f[])

{

int df_dim1 = *m;

double x2_2 = x2*x2, x2_3 = x2_2*x2;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

df[0] = x2 - 1.; /* df1/dx1(x) */

df[0 + df_dim1] = x1; /* df1/dx2(x) */

df[1] = x2_2 - 1.; /* df2/dx1(x) */

df[1 + df_dim1] = x1 * 2. * x2; /* df2/dx2(x) */

df[2] = x2_3 - 1.; /* df3/dx1(x) */

24 2.2. MI1L2

df[2 + df_dim1] = x1 * 3. * x2_2; /* df3/dx2(x) */

} /* fdf */

static int opti(int icontr)

{

#define N 2

#define M 3

#define IW (2*N+4)*M+N*(3*N+33)/2+93

extern void mi1l2(

void (*fdf)(const int *n, const int *m, const double x[],

double df[], double f[]),

int n,

int m,

double x[],

const double *dx,

double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i, j, k;

double w[IW], x[2];

int index[8], optim, maxfun;

double dx, eps;

/* SET PARAMETERS */

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

/* GRADIENT CHECK OR MINIMIZATION */

optim = icontr > 0;

dx = .001;

mi1l2(fdf, N, M, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d "

"IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

if (! optim) {

/* RESULTS FROM GRADIENT TEST */

for (k = 2; k <= 4; ++k) {

2. Unconstrained Optimization 25

index[k - 1] = (int) w[k * 2];

index[k + 3] = (int) w[(k << 1) + 1];

}

printf("TEST OF GRADIENTS\n\n");

printf("MAXIMUM FORWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[1],index[1],index[5]);

printf("MAXIMUM BACKWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[2],index[2],index[6]);

printf("MAXIMUM CENTRAL DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[3],index[3],index[7]);

printf("\nMAXIMUM ELEMENT IN DF: %8.2e\n",w[0]);

}

else {

/* RESULTS FROM OPTIMIZATION */

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

printf("ITERATION SUCCESSFUL\n\n");

break;

case 1:

printf("ITERATION SUCCESSFUL\n\n");

break;

case 2:

printf("NB: MAXIMUM NUMBER OF FUNCTION EVALUATIONS EXCEEDED\n\n");

break;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("SOLUTION: %18.10e\n",x[0]);

for (j = 1; j < N; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",x[j]);

}

printf("\nNUMBER OF CALLS OF FDF: %d\n\n", maxfun);

printf("FUNCTION VALUES AT THE SOLUTION: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

}

return 0;

}

int main()

{

opti(0); /* check gradients */

26 2.2. MI1L2

opti(1); /* optimize */

return 0;

}

We get the results

TEST OF GRADIENTS

MAXIMUM FORWARD DIFFERENCE: 3.00e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM BACKWARD DIFFERENCE: -1.50e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM CENTRAL DIFFERENCE: 5.00e-07 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM ELEMENT IN DF: 3.00e+00

RESULTS FROM OPTIMIZATION

ITERATION SUCCESSFUL

SOLUTION: 3.0000000000e+00

5.0000000000e-01

NUMBER OF CALLS OF FDF: 9

FUNCTION VALUES AT THE SOLUTION: 7.8039796847e-12

1.0468514944e-11

1.1182166304e-11

The results indicate that there is no error in the Jacobian.

2. Unconstrained Optimization 27

2.3. MI1L1. Minimization of the ℓ1-Norm of a
Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) =

m∑

i=1

| fi(x) | . (2.2)

Here x = [x1, . . . , xn]⊤ ∈ IRn is the vector of unknown parameters
and fi, i=1, . . . ,m is a set of functions that are twice continuously
differentiable. The user must supply a subroutine that evaluates f (x)
and the Jacobian J(x). There is an option for checking the implemen-
tation of J.

Method. The algorithm is iterative. It is based on successive lin-
earizations of the non-linear functions fi, combining a first order trust
region method with a local method which uses approximate second
order information. The method is described in [13].

Origin. Subroutine L1NLS from [11].

Remark. The trust region around the the current x is the ball cen-
tered at x with radius ∆ defined so that the linearizations of the non-
linear functions fi are reasonably accurate for all points inside the
ball. During iteration this bound is adjusted according to how well
the linear approximations centered at the previous iterate predict the
gain in F .

The user has to give an initial value for ∆. If the functions are
almost linear, then we recommend to use an estimate of the distance
between x0 and the solution x∗. Otherwise, we recommend ∆0 =
0.1‖x0‖. However the initial choice of ∆ is not critical because it is
adjusted by the subroutine during the iteration.

Use. The subroutine call is

mi1l1(fdf,n,m,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

28 2.3. MI1L1

fdf Subroutine written by the user with the following declara-
tion

void fdf(const int *N, const int *M,

const double x[],

double df[], double f[])

It must calculate the values of the functions and their gra-
dients at the point x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M

and store these numbers as follows,
f[i-1] = fi(x), i=1, . . . , m,

df[(j-1)m+(i-1)] =
∂fi
∂xj

(x),

{
i = 1, . . . ,m
j = 1, . . . ,n

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

x double array with n elements. The use depends on the entry
value of icontr.

icontr > 0 : On entry: Initial approximation to x∗.
On exit : Computed solution.

icontr ≤ 0 : Point at which the Jacobian should be checked.
Not changed.

dx double. The use depends on the entry value of icontr.

icontr > 0 : On entry: dx must be set by the user to an
initial value of the trust region radius, which
controls the step length of the iterations. See
Remark above. Must be positive.
On exit : Final trust region radius.

icontr ≤ 0 : Gradient check with dx used for h in (1.3).
Must be positive. Is not changed.

2. Unconstrained Optimization 29

eps double. Used only if the entry value of icontr is positive.
On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖. Must be positive.
On exit : If eps was chosen too small, then the iteration
stops when there is indication that rounding errors dominate,
and eps is set to 0.0 and icontr is set to 2. Otherwise not
changed.

maxfun integer. Used only if the entry value of icontr is positive.
On entry: Upper bound on the number of calls of fdf.

Must be positive.

On exit : Number of calls of fdf.

w double array with iw elements. Work space.
Entry values are not used.
Exit values depend on the entry value of icontr.

icontrentry > 0 : The function values at the computed so-
lution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

icontrentry ≤ 0 : Results of the gradient check are returned
in the first 10 elements of w as follows, cf. (1.10)

w[0] Maximum element in |df|.
w[1], w[4], w[5] δF , iF , jF .
w[2], w[6], w[7] δB, iB, jB.
w[3], w[8], w[9] δE , iE , jE .

In case of an error the indices point out the erroneous element
of the Jacobian matrix.

iw integer. Length of work space w.
Must be at least 2nm+ 5n2 + 11n+ 5m+ 5. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr > 0 : Start minimization.

icontr ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
icontr = 0 : Successful call.
icontr = 1 : Successful call.

30 2.3. MI1L1

icontr = 2 : Iteration stopped, either because eps is too
small, or because the maximum number of calls
of fdf was exceeded, see parameter maxfun.
The best solution approximation is returned in
x.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −5 : dx ≤ 0.0
icontr = −6 : eps ≤ 0.0
icontr = −7 : maxfun ≤ 0
icontr = −9 : iw < 2nm+5n2 +11n+5m+5

Example. Minimize

F (x) =

3∑

i=1

|fi(x)| ,

where the fi are given by (1.14), page 11.

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI1L1 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void fdf(const int *n, const int *m, const double x[],

double df[], double f[])

{

int df_dim1 = *m;

double x2_2 = x2*x2, x2_3 = x2_2*x2;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

2. Unconstrained Optimization 31

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

df[0] = x2 - 1.; /* df1/dx1(x) */

df[0 + df_dim1] = x1; /* df1/dx2(x) */

df[1] = x2_2 - 1.; /* df2/dx1(x) */

df[1 + df_dim1] = x1 * 2. * x2; /* df2/dx2(x) */

df[2] = x2_3 - 1.; /* df3/dx1(x) */

df[2 + df_dim1] = x1 * 3. * x2_2; /* df3/dx2(x) */

} /* fdf */

static int opti(int icontr)

{

#define N 2

#define M 3

#define IW 2*N*M+5*N*N+11*N+5*M+5

extern void mi1l1(

void (*fdf)(const int *n, const int *m, const double x[],

double df[], double f[]),

int n,

int m,

double x[],

const double *dx,

double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i, j, k;

double w[IW], x[2];

int index[8], optim, maxfun;

double dx, eps;

/* SET PARAMETERS */

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

/* GRADIENT CHECK OR MINIMIZATION */

optim = icontr > 0;

dx = (optim) ? 0.1 : .001;

mi1l1(fdf, N, M, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

32 2.3. MI1L1

printf("INPUT ERROR. PARAMETER NUMBER %d "

"IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

if (! optim) {

/* RESULTS FROM GRADIENT TEST */

for (k = 2; k <= 4; ++k) {

index[k - 1] = (int) w[k * 2];

index[k + 3] = (int) w[(k << 1) + 1];

}

printf("TEST OF GRADIENTS \n\n");

printf("MAXIMUM FORWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[1],index[1],index[5]);

printf("MAXIMUM BACKWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[2],index[2],index[6]);

printf("MAXIMUM CENTRAL DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[3],index[3],index[7]);

printf("\nMAXIMUM ELEMENT IN DF: %8.2e\n",w[0]);

}

else {

/* RESULTS FROM OPTIMIZATION */

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

printf("ITERATION SUCCESSFUL\n\n");

break;

case 1:

printf("ITERATION SUCCESSFUL\n\n");

break;

case 2:

printf("NB: EPS IS TOO SMALL OR\n"

"NB: MAXIMUM NUMBER OF FUNCTION EVALUATIONS EXCEEDED\n\n");

break;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("SOLUTION: %18.10e\n",x[0]);

for (j = 1; j < N; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",x[j]);

}

printf("\nNUMBER OF CALLS OF FDF: %d\n\n", maxfun);

printf("FUNCTION VALUES AT THE SOLUTION: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

2. Unconstrained Optimization 33

}

}

return 0;

}

int main()

{

opti(0); /* check gradients */

opti(1); /* optimize */

return 0;

}

We get the results

TEST OF GRADIENTS

MAXIMUM FORWARD DIFFERENCE: 3.00e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM BACKWARD DIFFERENCE: -1.50e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM CENTRAL DIFFERENCE: 5.00e-07 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM ELEMENT IN DF: 3.00e+00

RESULTS FROM OPTIMIZATION

ITERATION SUCCESSFUL

SOLUTION: 3.0000000000e+00

5.0000000000e-01

NUMBER OF CALLS OF FDF: 10

FUNCTION VALUES AT THE SOLUTION: 2.2204460493e-16

4.4408920985e-16

4.4408920985e-16

The results indicate that there is no error in the Jacobian.

34 2.4. MI1INF

2.4. MI1INF. Minimization of the ℓ
∞

-Norm of a
Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) = max
i

|fi(x) | . (2.3)

Here x = [x1, . . . , xn]⊤ ∈ IRn is the vector of unknown parameters
and fi, i=1, . . . ,m is a set of functions that are twice continuously
differentiable. The user must supply a subroutine that evaluates f (x)
and the Jacobian J(x). There is an option for checking the implemen-
tation of J.

Method. The algorithm is iterative. It is based on successive lin-
earizations of the non-linear functions fi and uses constraints on the
step vector. The linearized problems are solved by a linear program-
ming technique. The method is described in [15].

Origin. The main part of the subroutine was written by K. Madsen
and was published as VE01AD in the the Harwell Subroutine Library
[14]. We use K. Madsen’s original subroutine SUB1W which is consis-
tent with the other subroutines in the present package

Remark. The user has to give an initial value for ∆, which appears in
the constraint ‖h‖ ≤ ∆, where h is the step between two consecutive
iterates. During iteration this bound (trust region radius) is adjusted
according to how well the current linear approximations predict the
actual gain in F .

If the functions fi are almost linear, then we recommend to use
a value for ∆0, which is an estimate of the distance between x0 and
the solution x∗. Otherwise, we recommend ∆0 = 0.1‖x0‖. However
the initial choice of ∆ is not critical because it is adjusted by the
subroutine during the iteration.

Use. The subroutine call is

mi1inf(fdf,n,m,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

2. Unconstrained Optimization 35

fdf Subroutine written by the user with the following declara-
tion

void fdf(const int *N, const int *M,

const double x[],

double df[], double f[])

It must calculate the values of the functions and their gra-
dients at the point x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M

and store these numbers as follows,
f[i-1] = fi(x), i=1, . . . , m,

df[(j-1)m+(i-1)] =
∂fi
∂xj

(x),

{
i = 1, . . . ,m
j = 1, . . . ,n

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

x double array with n elements. The use depends on the entry
value of icontr.

icontr > 0 : On entry: Initial approximation to x∗.
On exit : Computed solution.

icontr ≤ 0 : Point at which the Jacobian should be checked.
Not changed.

dx double. The use depends on the entry value of icontr.

icontr > 0 : On entry: dx must be set by the user to an
initial value of the trust region radius, which
controls the step length of the iterations. See
Remark above. Must be positive.
On exit : Final trust region radius.

icontr ≤ 0 : Gradient check with dx used for h in (1.3).
Must be positive. Is not changed.

36 2.4. MI1INF

eps double. Used only if the entry value of icontr is positive.
On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖. Must be positive.
On exit : If eps was chosen too small, then the iteration stops
when there is indication that rounding errors dominate, and
eps is set to 0.0 and icontris set to 2. Otherwise not changed.

maxfun integer. Used only if the entry value of icontr is positive.
On entry: Upper bound on the number of calls of fdf.

Must be positive.

On exit : Number of calls of fdf.

w double array with iw elements. Work space.
Entry values are not used.
Exit values depend on the entry value of icontr.

icontrentry > 0 : The function values at the computed so-
lution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

icontrentry ≤ 0 : Results of the gradient check are returned
in the first 10 elements of w as follows, cf. (1.10)

w[0] Maximum element in |df|.
w[1], w[4], w[5] δF , iF , jF .
w[2], w[6], w[7] δB, iB, jB.
w[3], w[8], w[9] δE , iE , jE .

In case of an error the indices point out the erroneous element
of the Jacobian matrix.

iw integer. Length of work space w.
Must be at least 2nm+n2 + 14n+ 4m+ 11. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr > 0 : Start minimization.

icontr ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
icontr = 0 : Successful call.
icontr = 1 : Successful call.

2. Unconstrained Optimization 37

icontr = 2 : Iteration stopped, either because eps is too
small, or because the maximum number of calls
of fdf was exceeded, see parameter maxfun.
The best solution approximation is returned in
x.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −5 : dx ≤ 0.0
icontr = −6 : eps ≤ 0.0
icontr = −7 : maxfun ≤ 0
icontr = −9 : iw < 2nm+n2 +14n+4m+11

Example. Minimize

F (x) = max
i

| fi(x) | ,

where the fi are given by (1.14), page 11.

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI1INF 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void fdf(const int *n, const int *m, const double x[],

double df[], double f[])

{

int df_dim1 = *m;

double x2_2 = x2*x2, x2_3 = x2_2*x2;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

38 2.4. MI1INF

df[0] = x2 - 1.; /* df1/dx1(x) */

df[0 + df_dim1] = x1; /* df1/dx2(x) */

df[1] = x2_2 - 1.; /* df2/dx1(x) */

df[1 + df_dim1] = x1 * 2. * x2; /* df2/dx2(x) */

df[2] = x2_3 - 1.; /* df3/dx1(x) */

df[2 + df_dim1] = x1 * 3. * x2_2; /* df3/dx2(x) */

} /* fdf_ */

static int opti(int icontr)

{

#define N 2

#define M 3

#define IW 2*N*M+N*N+14*N+4*M+11

extern void mi1inf(

void (*fdf)(const int *n, const int *m, const double x[],

double df[], double f[]),

int n,

int m,

double x[],

const double *dx,

double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i, j, k;

double w[IW], x[2];

int index[8], optim, maxfun;

double dx, eps;

/* SET PARAMETERS */

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

/* GRADIENT CHECK OR MINIMIZATION */

optim = icontr > 0;

dx = (optim) ? 0.1 : .001;

mi1inf(fdf, N, M, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d "

"IS OUTSIDE ITS RANGE.\n",-icontr);

2. Unconstrained Optimization 39

return -icontr;

}

if (! optim) {

/* RESULTS FROM GRADIENT TEST */

for (k = 2; k <= 4; ++k) {

index[k - 1] = (int) w[k * 2];

index[k + 3] = (int) w[(k << 1) + 1];

}

printf("TEST OF GRADIENTS \n\n");

printf("MAXIMUM FORWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[1],index[1],index[5]);

printf("MAXIMUM BACKWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[2],index[2],index[6]);

printf("MAXIMUM CENTRAL DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[3],index[3],index[7]);

printf("\nMAXIMUM ELEMENT IN DF: %8.2e\n",w[0]);

}

else {

/* RESULTS FROM OPTIMIZATION */

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

printf("ITERATION SUCCESSFUL\n\n");

break;

case 1:

printf("ITERATION SUCCESSFUL\n\n");

break;

case 2:

printf("NB: EPS IS TOO SMALL OR\n"

"MAXIMUM NUMBER OF FUNCTION EVALUATIONS EXCEEDED\n\n");

break;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("SOLUTION: %18.10e\n",x[0]);

for (j = 1; j < N; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",x[j]);

}

printf("\nNUMBER OF CALLS OF FDF: %d\n\n", maxfun);

printf("FUNCTION VALUES AT THE SOLUTION: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

}

40 2.4. MI1INF

return 0;

}

int main()

{

opti(0); /* check gradients */

opti(1); /* optimize */

return 0;

}

We get the results

TEST OF GRADIENTS

MAXIMUM FORWARD DIFFERENCE: 3.00e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM BACKWARD DIFFERENCE: -1.50e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM CENTRAL DIFFERENCE: 5.00e-07 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM ELEMENT IN DF: 3.00e+00

RESULTS FROM OPTIMIZATION

ITERATION SUCCESSFUL

SOLUTION: 3.0000000000e+00

5.0000000000e-01

NUMBER OF CALLS OF FDF: 11

FUNCTION VALUES AT THE SOLUTION: -4.4408920985e-16

-4.4408920985e-16

0.0000000000e+00

The results indicate that there is no error in the Jacobian.

3. Constrained Optimization 41

3. Constrained Optimization

3.1. MI1CF. Constrained Minimization of a Scalar
Function

Purpose. Find x∗ that minimizes F (x), where the vector of unknown
parameters x = [x1, . . . , xn]⊤ ∈ IRn must satisfy the following non-
linear equality and inequality constraints,

ci(x) = 0 , i = 1, 2, . . . , leq ,

ci(x) ≥ 0 , i = leq+1, . . . , l .

The objective function F and the constraint functions {ci} must be
twice continuously differentiable. The user must supply a subroutine
that evaluates F (x), {ci(x)} and the gradients of F and {ci}. There
is an option for checking the implementation of these gradients.

Method. The algorithm is iterative. It is based on successively
approximating the non-linear problem with quadratic problems, i.e.
at the current iterate the objective function is approximated by a
quadratic function and the constraints are approximated by linear
functions. The algorithm uses the so-called “Watch-dog technique” as
described in [4] and [19]. The quadratic programming algorithm is
described in [20]

Origin. Harwell subroutine VF13AD from [14].

Use. The subroutine call is

mi1cf(fdfcdc,n,l,leq,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

42 3.1. MI1CF

fdfcdc Subroutine written by the user with the following declara-
tion

void fdfcdc(const int *N, const int *L,

const double x[],

double *f, double df[])

double c[], double dc[])

where n = *N, l = *L. It must calculate the value of
the objective function and its gradient at the point x =
[x[0], . . . , x[n-1]]⊤ and store these numbers as follows,

*f = F (x),

df[j-1] =
∂F

∂xj

(x) , j = 1, . . .n

c[i-1] = ci , i = 1, . . .l

dc[(j-1)l+(i-1)=
∂ci
∂xj

(x) , i = 1, . . .l andj = 1, . . .n

The name of the subroutine can be chosen freely by the user.

It is essential that the equality constraints (if any) are num-
bered first.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

l integer. Number of constraints, m.
Must be positive. Is not changed.

leq integer. Number of equality constraints, leq.
Must satisfy 0 ≤ leq ≤ min{l, n}. Is not changed.

x double array with n elements. The use depends on the entry
value of icontr.

icontr > 0 : On entry: Initial approximation to x∗.
It needs not satisfy the constraints.
On exit : Computed solution.

icontr ≤ 0 : Point at which the Jacobian should be checked.
Is not changed.

dx double. The use depends on the entry value of icontr.

icontr > 0 : dx does not enter into the computations.

3. Constrained Optimization 43

icontr ≤ 0 : Gradient check for the objective function and
for the constraints in fdfcdc with dx used for
h in (1.3). Must be nonzero. Is not changed.

eps double. The use depends on the entry value of icontr.

icontr > 0 : Must be set by the user to indicate the desired
accuracy of the results. Must be positive. The
iteration stops when the Kuhn-Tucker condi-
tions are approximately satisfied within a tol-
erance of eps. Is not changed.

icontr ≤ 0 : eps does not enter into the computations.

maxfun integer. Used only if the entry value of icontr is positive.
On entry: Upper bound on the number of calls of fdfcdc.

Must be positive.

On exit : Number of calls of fdfcdc.

w double array with iw elements. Work space.
Entry values are not used.
Exit values depend on the entry value of icontr.

icontrentry > 0 :
w[0] = F (x), the computed minimum.
w[i] = ci(x), i = 1, . . . , l

icontrentry ≤ 0 : Results of the gradient check are returned
in the first 17 elements of w as follows, cf. (1.10)

Objective function:

w[0] Maximum element in |df|.
w[1],w[8] δF and jF .
w[2],w[9] δB and jB.
w[3],w[10] δE and jE .
Constraints:

w[4] Maximum element in |dc|.
w[5],w[11],w[12] δF , iF and jF .
w[6],w[13],w[14] δB, iB and jB .
w[7],w[15],w[16] δE , iE and jE .

In case of an error the indices w[9..16] point out the erro-
neous gradient component.

iw integer. Length of work space w.
Must be at least 5

2n(n+9) + (n+8)l+ 15. Is not changed.

44 3.1. MI1CF

icontr integer.
On entry: Controls the computation,

icontr > 0 : Start minimization.
icontr ≤ 0 : Check gradient. No iteration

On exit : Information about performance,
icontr = 1 : Successful call.
icontr = 2 : Iteration stopped because the maximum num-

ber of calls of fdfcdc was exceeded, see maxfun.

icontr = 3 : Iteration stopped because more than 5 calls of
fdfcdc was needed in one line search. Check
your gradients.

icontr = 4 : Iteration stopped because an uphill search di-
rection was suggested. Check your gradients.

icontr = 5 : Iteration failed because it was not possible to
find a starting point satisfying all constraints.

icontr < 0 : Computation did not start for the following
reason,

icontr = −2 : n ≤ 0
icontr = −3 : l ≤ 0
icontr = −4 : leq < 0 or leq > min{l, n}
icontr = −6 : dx = 0.0 in case of gradient check
icontr = −7 : eps ≤ 0
icontr = −8 : maxfun ≤ 0
icontr = −9 : iw < 5

2n(n+9) + (n+8)l + 15

Example. Minimize

F (x) = sin(x1x2) + 2ex1+x2 + e−x1−x2

subject to the constraints

c1(x) ≡ 1 − x2
1 − x2

2 ≥ 0

c2(x) ≡ x2 − x3
1 ≥ 0

c3(x) ≡ x1 + 2x2 ≥ 0

#include <stdio.h>

#include <math.h>

3. Constrained Optimization 45

#include "f2c.h"

/* TEST OF MI1CF 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void fdfcdc(

const int *n, const int *l,

const double x[],

double *f, double df[], double c[], double dc[])

{

int dc_dim1 = *l;

double x1_2 = x1*x1, x1_3 = x1_2*x1;

double ccos, cexp;

/* Function Body */

ccos = cos(x1 * x2);

cexp = exp(x1 + x2);

*f = sin(x1 * x2) + cexp * 2 + 1 / cexp;

df[0] = x2 * ccos + cexp * 2 - 1 / cexp; /* df/dx1(x) */

df[1] = x1 * ccos + cexp * 2 - 1 / cexp; /* df/dx2(x) */

/* CONSTRAINTS */

c[0] = -x1_2 - x2 * x2 + 1.;

c[1] = -x1_3 + x2;

c[2] = x1 + x2 * 2.;

dc[0] = x1 * -2; /* dc1/dx1(x) */

dc[0 + dc_dim1] = x2 * -2; /* dc1/dx2(x) */

dc[1] = x1_2 * -3; /* dc2/dx1(x) */

dc[1 + dc_dim1] = 1.; /* dc2/dx2(x) */

dc[2] = 1.; /* dc3/dx1(x) */

dc[2 + dc_dim1] = 2.; /* dc3/dx2(x) */

} /* fdfcdc */

static int opti(int icontr)

{

#define N 2

#define L 3

#define LEQ 0

#define IW 5*N*N/2+45*N/2+L*(N+8)+15

extern void mi1cf(

void (*fdf)(const int *n, const int *l,

46 3.1. MI1CF

const double x[],

double *f, double df[],

double c[], double dc[]),

int n,

int l,

int leq,

double x[],

const double *dx,

const double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i, j, k;

double w[IW], x[N];

int index[8], indexc[16], optim, maxfun;

double dx, eps;

/* SET PARAMETERS */

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

/* GRADIENT CHECK OR MINIMIZATION */

optim = icontr > 0;

dx = (optim) ? 0.1 : .001;

mi1cf(fdfcdc, N, L, LEQ, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d "

"IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

if (! optim) {

/* RESULTS FROM GRADIENT TEST */

for (k = 1; k < 4; ++k) {

index[k] = (int) w[k + 7];

}

printf("TEST OF GRADIENTS \n\n");

printf("MAXIMUM FORWARD DIFFERENCE: %8.2e AT VARIABLE NO %d\n",

w[1],index[1]);

printf("MAXIMUM BACKWARD DIFFERENCE: %8.2e AT VARIABLE NO %d\n",

w[2],index[2]);

printf("MAXIMUM CENTRAL DIFFERENCE: %8.2e AT VARIABLE NO %d\n",

w[3],index[3]);

3. Constrained Optimization 47

printf("\nMAXIMUM ELEMENT IN DF: %8.2e\n",w[0]);

for (k = 6; k <= 8; ++k) {

indexc[k - 1] = (int) w[(k << 1) - 1];

indexc[k + 7] = (int) w[k * 2];

}

printf("TEST OF CONSTRAINT GRADIENTS\n\n");

printf("MAXIMUM FORWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[5],indexc[5],indexc[13]);

printf("MAXIMUM BACKWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[6],indexc[6],indexc[14]);

printf("MAXIMUM CENTRAL DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[7],indexc[7],indexc[15]);

printf("\nMAXIMUM ELEMENT IN DC: %8.2e\n",w[4]);

}

else {

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

case 1:

printf("ITERATION SUCCESSFUL\n\n");

break;

case 2:

printf("NB: MAXIMUM NUMBER OF FUNCTION EVALUATIONS EXCEEDED\n\n");

break;

case 3:

case 4:

printf("ITERATION HAS FAILED. THE TYPE OF THE FAILURE\n");

printf("INDICATES THAT YOUR GRADIENTS MAY BE ERRONEOUS.\n");

printf("USE THE GRADIENT CHECKING FACILITY.\n\n");

return icontr;

case 5:

printf("MI1CF HAS FAILED TO FIND A STARTING POINT\n");

printf("SATISFYING ALL OF THE CONSTRAINTS.\n\n");

return icontr;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("SOLUTION: %18.10e\n",x[0]);

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

for (i = 1; i < N; ++i) printf("%18.10e\n\n",x[i]);

printf("NUMBER OF CALLS OF FDFCDC: %d\n\n", maxfun);

printf("FUNCTION VALUE AT THE SOLUTION: %21.10e\n\n\n",w[0]);

printf("CONSTRAINT VALUES AT THE SOLUTION: %18.10e\n",w[1]);

for (j = 2; j <= L; ++j) {

for (i = 1; i <54-18 ; ++i) putchar(’ ’);

48 3.1. MI1CF

printf("%18.10e\n",w[j]);

}

}

return 0;

}

int main()

{

opti(0); /* check gradients */

opti(1); /* optimize */

return 0;

}

We get the results

TEST OF GRADIENTS

MAXIMUM FORWARD DIFFERENCE: 7.04e-03 AT VARIABLE NO 1

MAXIMUM BACKWARD DIFFERENCE: -3.52e-03 AT VARIABLE NO 1

MAXIMUM CENTRAL DIFFERENCE: 1.18e-06 AT VARIABLE NO 1

MAXIMUM ELEMENT IN DF: 1.52e+01

TEST OF CONSTRAINT GRADIENTS

MAXIMUM FORWARD DIFFERENCE: -3.00e-03 AT FUNCTION NO 2 AND VARIABLE NO 1

MAXIMUM BACKWARD DIFFERENCE: 1.50e-03 AT FUNCTION NO 2 AND VARIABLE NO 1

MAXIMUM CENTRAL DIFFERENCE: -5.00e-07 AT FUNCTION NO 2 AND VARIABLE NO 1

MAXIMUM ELEMENT IN DC: 3.00e+00

RESULTS FROM OPTIMIZATION

ITERATION SUCCESSFUL

SOLUTION: -8.2644738993e-01

5.6301395336e-01

NUMBER OF CALLS OF FDFCDC: 10

FUNCTION VALUE AT THE SOLUTION: 2.3895160145e+00

CONSTRAINT VALUES AT THE SOLUTION: -4.4408920985e-16

1.1274901557e+00

2.9958051679e-01

The results indicate that the gradients of both the objective function
and the constraints are implemented correctly.

3. Constrained Optimization 49

3.2. MI1CL1. Linearly Constrained Minimization
of the ℓ1-Norm of a Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) =

m∑

i=1

| fi(x) | , (3.1a)

and where the vector of unknown parameters x = [x1, . . . , xn]⊤ ∈ IRn

must satisfy the following linear equality and inequality constraints,

ci(x) ≡ d⊤

i x + ci = 0 , i = 1, 2, . . . , leq ,

ci(x) ≡ d⊤

i x + ci ≥ 0 , i = leq+1, . . . , l
(3.1b)

for given vectors {di} and scalars {ci}. The fi, i=1, . . . ,m is a set
of functions that are twice continuously differentiable. The user must
supply a subroutine that evaluates f (x) and the Jacobian J(x). There
is an option for checking the implementation of J.

Method. The algorithm is iterative. It is based on successive lin-
earizations of the non-linear functions fi, combining a first order trust
region method with a local method that uses approximate second or-
der information. The method is described in [13].

Origin. Subroutine L1NLS by Jørgen Hald [11].

Remarks. The trust region around the the current x is the ball
centered at x with radius ∆ defined so that the linearizations of the
non-linear functions fi are reasonably accurate for all points inside the
ball. During iteration this bound is adjusted according to how well
the linear approximations centered at the previous iterate predict the
gain in F .

The user has to give an initial value for ∆. If the functions are
almost linear, then we recommend to use an estimate of the dis-
tance between x0 and the solution x∗. Otherwise, we recommend
∆0 = 0.1‖x0‖. However the initial choice of ∆ is not critical because
it is adjusted by the subroutine during the iteration.

A solution is said to be “regular” when it is a strict local minimum,
i.e. there exists a positive number K such that

F (x) − F (x∗) ≥ K‖x− x∗‖

50 3.2. MI1CL1

for any feasible x near x∗. Otherwise, the solution is said to be “sin-

gular”.

Use. The subroutine call is

mi1cl1(fdf,n,m,l,leq,c,dc,x,&dx,&eps,&maxfun,w,iw,&icontr

The parameters are

fdf Subroutine written by the user with the following declara-
tion

void fdf(const int *N, const int *M,

const double x[],

double df[], double f[])

It must calculate the values of the functions and their gra-
dients at the point x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M

and store these numbers as follows,
f[i-1] = fi(x), i=1, . . . , m,

df[(j-1)m+(i-1)] =
∂fi
∂xj

(x),

{
i = 1, . . . ,m
j = 1, . . . ,n

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

l integer. Number of constraints, l.
Must be positive. Is not changed.

leq integer. Number of equality constraints, leq.
Must satisfy 0 ≤ leq ≤ min{l, n}. Is not changed.

c double array with l elements. The constant terms in the
constraints (3.1b) are stored in the following way

c[i-1] = ci, i = 1, . . . , l .
Is not changed.

3. Constrained Optimization 51

dc double array with l·n elements. The coefficients of the con-
straints (3.1b) stored in the following way,

dc[(i-1)n+(j-1)] = d
(j)
i , i = 1, . . . , l, j = 1, . . . , n .

Is not changed.

x double array with n elements. The use depends on the entry
value of icontr.

icontr > 0 : On entry: Initial approximation to x∗.
On exit : Computed solution.

icontr ≤ 0 : Point at which the Jacobian should be checked.
Is not changed.

dx double. The use depends on the entry value of icontr.

icontr > 0 : On entry: dx must be set by the user to an
initial value of the trust region radius, which
controls the step length of the iterations. See
Remarks above. Must be positive.
On exit : Final trust region radius.

icontr ≤ 0 : Gradient check with dx used for h in (1.3).
Must be positive. Is not changed.

eps double. Used only if the entry value of icontr is positive.
On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖. Must be positive.
On exit : eps contains the length of the last step of the iter-
ation. If eps was chosen too small, then the iteration stops
when there is indication that rounding errors dominate, and
icontr is set to 2.

maxfun integer. Used only if the entry value of icontr is positive.
On entry: Upper bound on the number of calls of fdf.

Must be positive.

On exit : Number of calls of fdf.

w double array with iw elements. Work space.
Entry values are not used.
Exit values depend on the entry value of icontr.

icontrentry > 0 : The function values at the computed so-
lution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

52 3.2. MI1CL1

icontrentry ≤ 0 : Results of the gradient check are returned
in the first 10 elements of w as follows, cf. (1.10)

w[0] Maximum element in |df|.
w[1], w[4], w[5] δF , iF , jF .
w[2], w[6], w[7] δB, iB, jB.
w[3], w[8], w[9] δE , iE , jE .

In case of an error the indices point out the erroneous element
of the Jacobian matrix.

iw integer. Length of work space w.
Must be at least 2nm+5n2 +5m+10n+4l. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr > 0 : Start minimization.

icontr ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
icontr = 0 : Successful call. Regular solution.
icontr = 1 : Successful call. Singular solution.
icontr = 2 : Iteration stopped, either because eps is too

small, or because the maximum number of calls
of fdf was exceeded, see parameter maxfun.
The best solution approximation is returned in
x.

icontr = 3 : The subroutine failed to find a point x satis-
fying all the constraints. The feasible region is
presumably empty.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −4 : l ≤ 0
icontr = −5 : leq < 0 or leq > min{l, n}
icontr = −9 : dx = 0.0
icontr = −10 : eps ≤ 0.0
icontr = −11 : maxfun ≤ 0
icontr = −13 : iw < 2nm+5n2+5m+10n+4l

3. Constrained Optimization 53

Example. Minimize

F (x) =

3∑

i=1

|fi(x)| ,

subject to the constraint

c(x) ≡ −x1 + x2 + 2 ≥ 0 .

The fi are given by (1.14), page 11.

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI1CL1 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void fdf(const int *n, const int *m, const double x[],

double df[], double f[])

{

int df_dim1 = *m;

double x2_2 = x2*x2, x2_3 = x2_2*x2;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

df[0] = x2 - 1.; /* df1/dx1(x) */

df[0 + df_dim1] = x1; /* df1/dx2(x) */

df[1] = x2_2 - 1.; /* df2/dx1(x) */

df[1 + df_dim1] = x1 * 2. * x2; /* df2/dx2(x) */

df[2] = x2_3 - 1.; /* df3/dx1(x) */

df[2 + df_dim1] = x1 * 3. * x2_2; /* df3/dx2(x) */

}

static int opti(int icontr)

{

#define N 2

#define M 3

#define L 1

54 3.2. MI1CL1

#define LEQ 0

#define IW 2*M*N+5*N*N+5*M+10*N+4*L

extern void mi1cl1(

void (*fdf)(const int *n, const int *m, const double x[],

double df[], double f[]),

int n,

int m,

int l,

int leq,

const double c[],

const double dc[],

double x[],

double *dx,

double *eps,

int *maxfun,

double *w,

int iw,

int *icontr);

/* Local variables */

int i, j, k;

double c[1];

double dc[2], w[IW], x[2];

int index[8],optim, maxfun;

double dx, eps;

/* SET PARAMETERS */

c[0] = 2.;

dc[0] = -1.;

dc[1] = 1.;

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

/* GRADIENT CHECK OR MINIMIZATION */

optim = icontr > 0;

dx = (optim) ? 0.1 : .001;

mi1cl1(fdf, N, M, L, LEQ, c, dc, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d "

"IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

if (! optim) {

/* RESULTS FROM GRADIENT TEST */

3. Constrained Optimization 55

for (k = 2; k <= 4; ++k) {

index[k - 1] = (int) w[k * 2];

index[k + 3] = (int) w[(k << 1) + 1];

}

printf("TEST OF GRADIENTS \n\n");

printf("MAXIMUM FORWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[1],index[1],index[5]);

printf("MAXIMUM BACKWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[2],index[2],index[6]);

printf("MAXIMUM CENTRAL DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[3],index[3],index[7]);

printf("\nMAXIMUM ELEMENT IN DF: %8.2e\n",w[0]);

}

else {

/* RESULTS FROM OPTIMIZATION */

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

printf("ITERATION SUCCESSFUL, REGULAR SOLUTION\n\n");

break;

case 1:

printf("ITERATION SUCCESSFUL, SINGULAR SOLUTION\n\n");

break;

case 2:

printf("NB: EPS IS TOO SMALL OR\n"

"MAXIMUM NUMBER OF FUNCTION EVALUATIONS EXCEEDED\n\n");

break;

case 3:

printf("NO FEASIBLE POINT FOUND - CHECK YOUR CONSTRAINTS\n\n");

return 3;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("SOLUTION: %18.10e\n",x[0]);

for (j = 1; j < N; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",x[j]);

}

printf("NUMBER OF CALLS OF FDF: %d\n\n", maxfun);

printf("FUNCTION VALUES AT THE SOLUTION: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

}

return 0;

56 3.2. MI1CL1

}

int main()

{

opti(0); /* check gradients */

opti(1); /* optimize */

return 0;

}

We get the results

TEST OF GRADIENTS

MAXIMUM FORWARD DIFFERENCE: 3.00e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM BACKWARD DIFFERENCE: -1.50e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM CENTRAL DIFFERENCE: 5.00e-07 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM ELEMENT IN DF: 3.00e+00

RESULTS FROM OPTIMIZATION

ITERATION SUCCESSFUL, REGULAR SOLUTION

SOLUTION: 2.3660254038e+00

3.6602540378e-01

NUMBER OF CALLS OF FDF: 9

FUNCTION VALUES AT THE SOLUTION: 0.0000000000e+00

2.0096189432e-01

3.7500000000e-01

The results indicate that the gradients of the {fi} are implemented
correctly.

3. Constrained Optimization 57

3.3. MI1CIN. Linearly Constrained Minimax
Optimization of a Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) = max
i

{ fi(x) } , (3.2a)

and where the vector of unknown parameters x = [x1, . . . , xn]⊤ ∈ IRn

must satisfy the following linear equality and inequality constraints,

ci(x) ≡ d
⊤

i x + ci = 0 , i = 1, 2, . . . , leq ,

ci(x) ≡ d⊤

i x + ci ≥ 0 , i = leq+1, . . . , l
(3.2b)

for given vectors {di} and scalars {ci}. The fi, i=1, . . . ,m is a set
of functions that are twice continuously differentiable. The user must
supply a subroutine that evaluates f (x) and the Jacobian J(x). There
is an option for checking the implementation of J.

Method. The algorithm is iterative. It is based on successive lin-
earizations of the non-linear functions fi, combining a first order trust
region method with a local method that uses approximate second or-
der information. The method is described in [12].

Origin. Subroutine MLA1QS by Jørgen Hald [11], translated from For-
tran to C by the Bandler Group, [1].

Remarks. The trust region around the the current x is the ball
centered at x with radius ∆ defined so that the linearizations of the
non-linear functions fi are reasonably accurate for all points inside the
ball. During iteration this bound is adjusted according to how well
the linear approximations centered at the previous iterate predict the
gain in F .

The user has to give an initial value for ∆. If the functions are
almost linear, then we recommend to use an estimate of the dis-
tance between x0 and the solution x∗. Otherwise, we recommend
∆0 = 0.1‖x0‖. However the initial choice of ∆ is not critical because
it is adjusted by the subroutine during the iteration.

The user must also supply an initial approximation for the solution
x∗. The algorithm requires that the initial point is feasible. For
determination of a feasible starting point, see eg. [12] or [13].

58 3.3. MI1CIN

A solution is said to be “regular” when it is a strict local minimum,
i.e. there exists a positive number K such that

F (x) − F (x∗) ≥ K‖x− x∗‖

for any feasible x near x∗. Otherwise, the solution is said to be “sin-

gular”.

MI1CIN can also be used to compute a linearly constrained mini-
mizer of the ℓ∞-norm of f ,

F (x) = max
i

| fi(x) | . (3.3a)

For that purpose we introduce the extended vector function
f̂ : IRn 7→ IR2m defined by

f̂i(x) =

{
fi(x) for i = 1, 2, . . . ,m

−fi−m(x) for i = m+1, . . . , 2m
. (3.3b)

It is easily seen that max
i=1, . . . , 2m

{f̂i(x)} = max
i=1, . . . ,m

{|fi(x)|}.

Use. The subroutine call is

mi1cin(fdf,n,m,l,leq,c,dc,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

fdf Subroutine written by the user with the following declara-
tion

void fdf(const int *N, const int *M,

const double x[],

double df[], double f[])

It must calculate the values of the functions and their gra-
dients at the point x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M

and store these numbers as follows,
f[i-1] = fi(x), i=1, . . . , m,

df[(j-1)m+(i-1)] =
∂fi
∂xj

(x),

{
i = 1, . . . ,m
j = 1, . . . ,n

The name of this subroutine can be chosen freely by the user.

3. Constrained Optimization 59

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

l integer. Number of constraints, l.
Must be positive. Is not changed.

leq integer. Number of equality constraints, leq.
Must satisfy 0 ≤ leq ≤ min{l, n}. Is not changed.

c double array with l elements. The constant terms in the
constraints (3.2b) are stored in the following way

c[i-1] = ci, i = 1, . . . , l .
Is not changed.

dc double array with l·n elements. The coefficients of the con-
straints (3.2b) stored in the following way,

dc[(i-1)n+(j-1)] = d
(j)
i , i = 1, . . . , l, j = 1, . . . , n .

Is not changed.

x double array with n elements. The use depends on the entry
value of icontr.

icontr > 0 : On entry: Initial approximation to x∗. Must
be feasible.
On exit : Computed solution.

icontr ≤ 0 : Point at which the Jacobian should be checked.
Is not changed.

dx double. The use depends on the entry value of icontr.

icontr > 0 : dx must be set by the user to an initial value of
the trust region radius, which controls the step
length of the iterations. See Remarks above.
Must be positive. Is not changed.

icontr ≤ 0 : Gradient check with dx used for h in (1.3).
Must be positive. Is not changed.

60 3.3. MI1CIN

eps double. Used only if the entry value of icontr is positive.
On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖. Must be positive.
On exit : eps contains the length of the last step of the iter-
ation. If eps was chosen too small, then the iteration stops
when there is indication that rounding errors dominate, and
icontr is set to 2.

maxfun integer. Used only if the entry value of icontr is positive.
On entry: Upper bound on the number of calls of fdf.

Must be positive.

On exit : Number of calls of fdf.

w double array with iw elements. Work space.
Entry values are not used.
Exit values depend on the entry value of icontr.

icontrentry > 0 : The function values at the computed so-
lution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

icontrentry ≤ 0 : Results of the gradient check are returned
in the first 10 elements of w as follows, cf. (1.10)

w[0] Maximum element in |df|.
w[1], w[4], w[5] δF , iF , jF .
w[2], w[6], w[7] δB, iB, jB.
w[3], w[8], w[9] δE , iE , jE .

In case of an error the indices point out the erroneous element
of the Jacobian matrix.

iw integer. Length of work space w.
Must be at least 2nm+5n2+4m+8n+4l+3. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr > 0 : Start minimization.

icontr ≤ 0 : Check gradient. No iteration.

On exit : Information about performance,
icontr = 0 : Successful call. Regular solution.
icontr = 1 : Successful call. Singular solution.

3. Constrained Optimization 61

icontr = 2 : Iteration stopped, either because eps is too
small, or because the maximum number of calls
of fdf was exceeded, see parameter maxfun.
The best solution approximation is returned in
x.

icontr = 2 : The subroutine failed to find a point x satis-
fying all the constraints. The feasible region is
presumably empty.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −4 : l ≤ 0
icontr = −5 : leq < 0 or leq > min{l, n}
icontr = −8 : The initial point x is not feasi-

ble
icontr = −9 : dx = 0.0
icontr = −10 : eps ≤ 0.0
icontr = −11 : maxfun ≤ 0
icontr = −13 : iw < 2nm + 5n2 + 4m + 8n +

4l+ 3

Example. Minimize

F (x) = max
i

| fi(x) | ,

subject to the constraint

c(x) ≡ −x1 + x2 + 2 ≥ 0 .

The fi are given by (1.14), page 11. This is a problem of computing
a linearly constrained minimizer of the ℓ∞-norm of f , and we extend
the vector f to f̂ as defined in (3.3b).

62 3.3. MI1CIN

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI1CIN 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void fdf(const int *n, const int *m, const double x[],

double df[], double f[])

{

int df_dim1 = *m;

double x2_2 = x2*x2, x2_3 = x2_2*x2;

int i,j,mhalf;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

df[0] = x2 - 1.; /* df1/dx1(x) */

df[0 + df_dim1] = x1; /* df1/dx2(x) */

df[1] = x2_2 - 1.; /* df2/dx1(x) */

df[1 + df_dim1] = x1 * 2. * x2; /* df2/dx2(x) */

df[2] = x2_3 - 1.; /* df3/dx1(x) */

df[2 + df_dim1] = x1 * 3. * x2_2; /* df3/dx2(x) */

/* find second half of function and gradient values */

for (mhalf = j = 3; j < df_dim1; j++) {

f[j] = -f[j-mhalf];

for (i = 0; i < *n; i++)

df[j + i * df_dim1] = -df[j - mhalf + i * df_dim1];

}

} /* fdf */

static int opti(int icontr)

{

#define N 2

#define M 6

#define L 1

#define LEQ 0

#define IW 2*N*M+5*N*N+4*M+8*N+4*L+3

extern void mi1cin(

void (*fdf)(const int *n, const int *m, const double x[],

double df[], double f[]),

3. Constrained Optimization 63

int n,

int m,

int l,

int leq,

const double c[],

const double dc[],

double x[],

double *dx,

double *eps,

int *maxfun,

double *w,

int iw,

int *icontr);

/* Local variables */

int i, j, k;

double c[1];

double dc[2], w[IW], x[2];

int index[8], optim, maxfun;

double dx, eps;

/* SET PARAMETERS */

c[0] = 2.;

dc[0] = -1.;

dc[1] = 1.;

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

/* GRADIENT CHECK OR MINIMIZATION */

optim = icontr > 0;

dx = (optim) ? 0.1 : .001;

mi1cin(fdf, N, M, L, LEQ, c, dc, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d "

"IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

if (! optim) {

/* RESULTS FROM GRADIENT TEST */

for (k = 2; k <= 4; ++k) {

index[k - 1] = (int) w[k * 2];

index[k + 3] = (int) w[(k << 1) + 1];

}

printf("TEST OF GRADIENTS \n\n");

printf("MAXIMUM FORWARD DIFFERENCE: %8.2e "

64 3.3. MI1CIN

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[1],index[1],index[5]);

printf("MAXIMUM BACKWARD DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[2],index[2],index[6]);

printf("MAXIMUM CENTRAL DIFFERENCE: %8.2e "

"AT FUNCTION NO %d AND VARIABLE NO %d\n",

w[3],index[3],index[7]);

printf("\nMAXIMUM ELEMENT IN DF: %8.2e\n",w[0]);

}

else {

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

printf("ITERATION SUCCESSFUL, REGULAR SOLUTION\n\n");

break;

case 1:

printf("ITERATION SUCCESSFUL, SINGULAR SOLUTION\n\n");

break;

case 2:

printf("EPS IS TOO SMALL\n\n");

break;

case 3:

printf("MAXIMUM NUMBER OF FUNCTION EVALUATIONS EXCEEDED\n");

return 3;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("SOLUTION: %18.10e\n",x[0]);

for (j = 1; j < N; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",x[j]);

}

printf("NUMBER OF CALLS OF FDF: %d\n\n", maxfun);

printf("FUNCTION VALUES AT THE SOLUTION: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

}

return 0;

}

int main()

{

opti(0); /* check gradients */

opti(1); /* optimize */

return 0;

}

3. Constrained Optimization 65

We get the results

TEST OF GRADIENTS

MAXIMUM FORWARD DIFFERENCE: 3.00e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM BACKWARD DIFFERENCE: -1.50e-03 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM CENTRAL DIFFERENCE: 5.00e-07 AT FUNCTION NO 3 AND VARIABLE NO 2

MAXIMUM ELEMENT IN DF: 3.00e+00

RESULTS FROM OPTIMIZATION

ITERATION SUCCESSFUL, SINGULAR SOLUTION

SOLUTION: 2.3660254038e+00

3.6602540378e-01

NUMBER OF CALLS OF FDF: 15

FUNCTION VALUES AT THE SOLUTION: -2.2204460493e-16

2.0096189432e-01

3.7500000000e-01

2.2204460493e-16

-2.0096189432e-01

-3.7500000000e-01

The results indicate that the gradients of the {fi} are implemented
correctly.

References 67

References

[1] J.W. Bandler with Simulation Optimization Systems Research

Laboratory, Department of Electrical and Computer Engineer-

ing, McMaster University, Hamilton, ON, Canada L8S 4K1

and with Bandler Corporation, Dundas, ON, Canada L9H 5E7

(WWW: http://www.sos.mcmaster.ca and email: bandlermc-
master.ca.)

[2] E.M.L. Beale (1958): On an Iterative Method of Finding a Local

Minimum of a Function of More than one Variable. Princeton
Univ. Stat. Techn. Res. Group, Techn. Rep. 25.

[3] P. Brock, K. Madsen, and H.B. Nielsen (2004): Robust Non-

gradient C Subroutines for Non-Linear Optimization. IMM-
Technical report-2004-22, Informatics and Mathematical Mod-
elling (IMM), Technical University of Denmark.

[4] R.M. Chamberlain, C. Lemarechal, H.C. Pedersen and M.J.D.
Powell (1982): The Watchdog Technique for Forcing Conver-

gence in Algorithms for Constrained Optimization. Mathemat-

ical Programming Study 16, 1 – 17.

[5] J.E. Dennis, D.M. Gay and R.E. Welsch (1981a): An adaptive

nonlinear least-squares algorithm. ACM Trans. Math. Software,
Vol. 7, pp. 348-368.

[6] J.E. Dennis, D.M. Gay and R.E. Welsch (1981b): ALGORITHM

573. NL2SOL - An adaptive nonlinear least-squares algorithm.

ACM Trans. Math. Software, Vol. 7, pp. 364-383.

[7] J.E. Dennis and R.B. Schnabel (1983): Numerical Methods for

Unconstrained Optimization and Nonlinear Equations. Prentice
Hall Series in Computational Mathematics.

[8] R. Fletcher (1987): Practical Methods of Optimization, 2nd edi-
tion. Wiley.

[9] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright (1983):
Computing forward difference intervals for numerical optimiza-

tion. SIAM J. Sci. Stat. Comput. Vol. 4, pp. 310-321.

[10] J. Hald (1981a): MMLA1Q, a Fortran Subroutine for Linearly

Constrained Minimax Optimization. Report NI-81-01, Institute
for Numerical Analysis (now part of IMM), Technical University
of Denmark.

68 References

[11] J. Hald (1981b): A 2-Stage Algorithm for Nonlinear ℓ1 Opti-

mization. Report NI-81-03, Institute for Numerical Analysis
(now part of IMM), Technical University of Denmark.

[12] J. Hald and K. Madsen (1981): Combined LP and Quasi-Newton

Methods for Minimax Optimization. Mathematical Pro-

gramming 20, 49 – 62.

[13] J. Hald and K. Madsen (1985): Combined LP and Quasi-Newton

Methods for Nonlinear ℓ1 Optimization. SIAM J. Numer.

Anal. 20, 68 – 80.

[14] Harwell Subroutine Library. (1984). Report R9185, Computer
Science and Systems Division, Harwell Laboratory, Oxfordshire,
OX11 ORA, England.

[15] K. Madsen (1975): An Algorithm for Minimax Solution of

Overdetermined Systems of Nonlinear Equations. J. IMA 16,
321 – 328.

[16] K. Madsen, P. Hegelund and P.C. Hansen (1991): Robust c Sub-

routines for Non-Linear Optimization. Report NI-91-03, Insti-
tute for Numerical Analysis (now part of IMM), Technical Uni-
versity of Denmark.

[17] K. Madsen, H.B. Nielsen and J.Søndergaard (2002): Robust Sub-

routines for Non-Linear Optimization. Technical Report IMM-
REP-2002-02, Informatics and Mathematical Modelling (IMM),
Technical University of Denmark.

[18] J. Nocedal and S.J. Wright (1999): Numerical Optimization.
Springer, New York.

[19] M.J.D. Powell (1982): Extension to Subroutine VF02AD. In
R.F. Drenik and F. Kozin (eds.), “System Modeling and Opti-
mization”, Lecture Notes in Control and Informations

Sciences 38, Springer-Verlag, 529 – 538.

[20] M.J.D. Powell (1985): On the Quadratic Programming Algo-

rithm of Goldfarb and Idnani. Mathematical Programming

Study 25, 46 – 61.

[21] P. Wolfe (1982): Checking the Calculation of Gradients. ACM

TOMS., Vol. 8. pp. 337-343.

