
IMM
INFORMATICS AND MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Kongens Lyngby – Denmark

ROBUST NON-GRADIENT
C SUBROUTINES FOR

NON-LINEAR
OPTIMIZATION

Pernille Brock

Kaj Madsen

Hans Bruun Nielsen

Revised version of report NI-91-04

IMM-Technical Report-2004-22

IMM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13700799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1. Introduction 5

1.1. Problem Formulation 5

1.2. Non-gradient versus gradient methods 6

1.3. Approximation of gradients 7

1.4. Test Functions . 9

1.5. Modifications . 10

1.6. Package overview . 11

2. Unconstrained Optimization 12

2.1. MI0F. Minimization of a Scalar Function 12

Non-gradient version 12

Numerical gradient version 15

2.2. MI0L2. Minimization of the ℓ2-Norm of a
Vector Function (Least Squares) 20

Non-gradient version 20

Numerical gradient version 24

2.3. MI0L1. Minimization of the ℓ1-Norm of a
Vector Function . 30

2.4. MI0INF. Minimization of the ℓ∞-Norm of a
Vector Function . 35

Non-gradient version 35

Numerical gradient version 38

3. Constrained Optimization 44

3.1. MI0CF. Constrained Minimization of a Scalar Function 44

4 CONTENTS

3.2. MI0CL1. Linearly Constrained Minimization
of the ℓ1-Norm of a Vector Function 50

3.3. MI0CIN. Linearly Constrained Minimax
Optimization of a Vector Function 57

References 65

1. Introduction

This report presents a package of robust and easy-to-use C subrou-
tines for solving unconstrained and constrained non-linear optimiza-
tion problems, where gradient information is not required. The in-
tention is that the routines should use the currently best algorithms
available. All routines have standardized calls, and the user does not
have to worry about special parameters controlling the iterations. For
convenience we include an option for numerical checking of the user’s
implementation of the gradient.

Note that another report [3] presents a collection of robust sub-
routines for both unconstrained and constrained optimization but re-
quiring gradient information. The parameter lists for the subroutines
in both collections are similar so it is easy to switch between the non-
gradient and the gradient methods. All of the subroutine names in
this report start with MI0. The corresponding names of the gradient
subroutines are obtained by changing 0 to 1.

The present report is a new and updated version of a previous
report NI-91-04 with the title Non-gradient c Subroutines for Non-

Linear Optimization, [16]. Both the previous and the present report
describe a collection of subroutines, which have been translated from
Fortran to C. The reason for writing the present report is that some
of the C subroutines have been replaced by more effective and robust
versions translated from the original Fortran subroutines to C by the
Bandler Group, see [1]. Also the test examples have been modified to
some extent. For a description of the original Fortran subroutines see
the report [17]. The software changes are listed in Section 1.5.

1.1. Problem Formulation

We consider minimization of functions of vector arguments, F :
IRn 7→ IR. The function may be a norm of vector valued function
f : IRn 7→ IRm. For the scalar case the user must provide a subrou-
tine, which – for a given x – returns the function value F (x). In
case of a vector function the user’s subroutine must return the vector
f(x) = [f1 . . . fm]⊤. For an efficient performance of the optimization
algorithm the function must be implemented without errors. It is
however not possible to check the correctness of the implementation
of F (or f).

6 1.2. Non-gradient versus gradient methods

1.2. Non-gradient versus gradient methods

Most efficient optimization software requires user-implemented gra-
dients of the functions. This gives faster and more reliable methods
described in e.g. [3]. A recurrent reason, however, for erroneous runs
with programs including this kind of methods is that the user makes
errors when implementing the gradients. Mostly such an error will
prevent the program from providing convergence. Occasionally we
see convergence in spite of erroneous gradients, but the accuracy and
speed of the method are ruined. Often the functions to be minimized
are difficult or impossible to differentiate although they are differen-
tiable. Thus there are many reasons for providing subroutines which
do not rely upon user-implemented gradients but either compute a
difference approximation or use special non-gradient algorithms.

For most of the unconstrained problem types, namely the subrou-
tines MI0F, MI0L2, and MI0INF, we provide two subroutines:

(i) An implementation of a non-gradient method where gradient ap-

proximations are calculated automatically using the function val-

ues during the iteration.

(ii) An implementation of a gradient method (from [3]) where the

gradients are approximated by differences at each iterate. Thus

for an n-dimensional problem (n + 1) function evaluations are

needed for each iteration of the method.

The two methods have similar argument lists so, in principle, the user
only needs to change one parameter in order to change method. The
choice beteen the two methods is communicated through the variable
icontr of the parameter list.

The first method is a non-gradient method, the second is a gra-
dient method with difference approximations of the gradients. The
rationale is that non-gradient methods are faster but not always ro-
bust, i.e. they may fail to provide convergence. Since the two methods
are different, e.g. in regard to the size of the necessary work area, they
are described seperately but illustrated with a common example. Note
that the extra n function calls needed to approximate the gradient at
each iterate are not counted by the examples. Thus the number of
function evaluations is about (n + 1) times the number of iterations
given.

1. Introduction 7

For the unconstrained problem, MI0L1, as well as for the con-
strained problem types, MI0CF, MI0CL1, and MI0CIN, we only provide
subroutines of type (ii).

1.3. Approximation of gradients

In the subroutine class (ii), see the previous section, the gradients
are approximated using a computed difference approximation at a
single point. This is not an easy task, because the result depends on
the step length used in the difference. If this step length is too large
then the result may be useless because of truncation errors, and if the
step length is too small then the result may be destroyed by rounding
errors.

As an illustration we describe the difference approximation via
a real function in one variable. The approximations are made using
function values from the center point x and one other point.

The approximation to df
dx

(x) is the forward difference approxima-
tion given by:

f(x + h) − f(x)

h
(1.1)

If the function is twice differentiable then the truncation error associ-
ated with this approximation is:

DF (h) =
df

dx
(x) − f(x + h) − f(x)

h

≃ k1h

(1.2)

where k1 is a constant.

Now let g be the computed derivative of f at the point x:

g = fl

(
df

dx
(x)

)
(1.3)

where fl denotes the floating point number representation.
The deviation between g and the difference approximation has three
contributions:

8 1.3. Approximation of gradients

the truncation error,

the rounding errors in the computation of the difference approx-

imation and of g,

the errors (if any) in the implementation of the derivative df
dx

(x).

These three deviation contributions are characterized by the way in
which they depend on h:

(1) The truncation error decreases with decreasing h as DF (h) =

O(h).

(2) The rounding errors usually varies like O(h−1), i.e. it decreases

when h decreases.

(3) The implementation error is presumably independent of h.

As h decreases, the truncation contribution to the deviation decreases
whereas the rounding error contribution increases. If h gets small
enough, then the rounding error contribution starts to dominate, usu-
ally this happens when h passes a threshold value of about |x|√ǫM ,
ǫM being the machine accuracy. For even smaller values of h the
deviations will increase with decreasing step length h.

As a compromise between the two first deviation contributions h

is chosen as 10−3|x|, a fair choice for the accuracy used by today’s
computers.

It is straigthforward to generalize the case of a scalar function
to an m-dimensional vector function of an n-dimensional variable.
In this case the exact gradients are given by the Jacobian matrix

J(x) ∈ IRm×n, defined by

J =





∂f1

∂x1
· · · ∂f1

∂xn
...

...
∂fm

∂x1
· · · ∂fm

∂xn




, (1.4)

i.e., the ith row in J is the gradient of fi, the ith component of f .
Now each of the Jacobian elements should be approximated by a for-
ward difference approximation calculated by taking a step h in the
proper direction. Jacobian element (i, j) is then approximated by the

1. Introduction 9

difference approximation,

∂fi

∂xj

(x) ≃ fi(x + hej) − fi(x)

h
(1.5)

where h is the step length and ej is a unit vector in the jth direction.

1.4. Test Functions

Many of the examples in this report use the following set of functions,
f : IR2 7→ IR3, originally given by Beale [2],

f1(x) = 1.5 − x1(1 − x2)

f2(x) = 2.25 − x1(1 − x2
2)

f3(x) = 2.625 − x1(1 − x3
2)

(1.6)

10 1.5. Modifications

1.5. Modifications

The following modifications were made compared with the previous
version of the package described in [16],

1◦ The descriptions of the algorithms have been modified to a certain

extent.

2◦ The test examples and results have been updated.

3◦ In the package is included makefiles for a UNIX platform, link-

ing the files in the respective directory. These makefiles must be

modified by the user, if the subroutines should work on a differ-

ent platform. A succesful linkage and compilation relies on the

existence of the header file f2c.h in the parent directory.

4◦ The subroutine MI0CIN and the auxiliary functions called from

this subroutine have been replaced by more effective and robust

versions, compared to the previous package. The new versions

have been translated from Fortran to C by the Bandler Group,

see [1].

1. Introduction 11

1.6. Package overview

The package contains the following subroutines:

MI0F: Unconstrained minimization of a scalar function.

Origin of non-gradient method: VA04A, [14].
Origin of gradient method: VA13CD, [14].

MI0L2: Unconstrained minimization of the ℓ2-norm of a vector func-
tion (least squares).

Origin of non-gradient method: VA05AD, [14].
Origin of gradient method: NL2SOL, [5] and [6].

MI0L1: Unconstrained minimization of the ℓ1-norm of a vector
function.

Origin: L1NLS, [11]

MI0INF: Unconstrained minimization of the ℓ∞-norm of a vector
function.

Origin of non-gradient method: VG02AD, [14].
Origin of gradient method: SUB1W, [15].

MI0CF: Minimization of a non-linear function subject to non-linear
constraints (mathematical programming).

Origin: VF13AD, [20].

MI0CL1: Linearly constrained minimization of the ℓ1-norm of a vector
function.

Origin: L1NLS, [11].

MI0CIN: Linearly constrained minimax optimization of a vector
function.

Origin: MLA1QS, [10] translated from Fortran to C by the
Bandler Group, [1].

12 2.1. MI0F

2. Unconstrained Optimization

2.1. MI0F. Minimization of a Scalar Function

Non-gradient version

Purpose. Find x∗ that minimizes F (x), where x = [x1, . . . , xn]⊤ ∈
IRn is the vector of unknown parameters and the scalar objective func-
tion F is twice continuously differentiable. The user must supply a
subroutine that evaluates F (x).

Method. A variation of the simple method of changing one variable
at a time is used. The method has the property that when applied to
a quadratic form, it causes conjugate directions of search to be chosen,
thus finishing in at most n steps. Thus when applied to a general func-
tion the ultimate rate of convergence is fast, see [19]. The minimum
will almost never be found in less than n iterations, each iteration us-
ing at least 2n different values of the function. Each iteration causes
the function to decrease, except when the ultimate convergence crite-
rion is met.

Origin. MI0F uses a modified version of the subroutine VA04AD from
[14], modified such that it is consistent with the other routines in this
package.

Ultimate convergence criterion. First, convergence will be as-
sumed when an iteration changes each variable by less than 10% of
the required accuracy as defined by eps. Such a point is found and
is often displaced by 10 times the required accuracy in each variable.
Minimization is then continued from the new point until a change of
less than 10% is again made by an iteration. The two estimates of the
minimum are finally compared and the best is returned.

Recommendations. The following points are recommmended:

(i) Set dx as large as reasonable, remembering that it should prevent

the maximum step from jumping from one valley to another.

(ii) Set the required accuracy so that dx > 100.

(iii) If the results appear unreasonable, try with different initial values

of the variables set in the point x.

2. Unconstrained Optimization 13

Use. The subroutine call is

mi0f(calf,n,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

calf Subroutine written by the user with the following declaration

void calf(const int *N, const double x[],

double *f)

It must calculate the value of the objective function at the
point x = [x[0], . . . , x[n-1]]⊤, n = *N, and store the function
value as *f = F (x).

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

x double array with n elements.
On entry: Initial approximation to x∗.
On exit : Computed solution. x[j-1] will contain the value
of xj at the minimum position to the required accuracy, see
Ultimate Convergence criterion above.

dx double.
dx must be set by the user to control the step length of the
iterations. The variable xj will be changed by not more than
dx · eps. See Recommendations above. Must be positive.
Is not changed.

eps double. Desired accuracy.
eps must be set by the user to the desired absolute accuracy
of the solution. It is assumed that the variables are scaled to
be roughly proportional. Must be positive. Is not changed.

maxfun integer.
On entry: Upper bound on the number of iterations. Must
be positive.
On exit : Number of calls of calf.

w double array with iw elements. Work space.
On entry: The values of w are not used.
On exit : w[0] = F (X), the computed minimum.

14 2.1. MI0F

iw integer. Length of work space w.
Must be at least n(n+4). Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 0 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration successful.
icontr = 1 : Iteration successful.
icontr = 2 : Iteration stopped because the maximum num-

ber of iterations was exceeded, see parameter
maxfun.

icontr = 3 : Maximum change does not alter function.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −4 : dx ≤ 0.0
icontr = −5 : eps ≤ 0.0
icontr = −6 : maxfun ≤ 0
icontr = −8 : iw < n(n+4)
icontr = −9 : icontrentry < 0

2. Unconstrained Optimization 15

Numerical gradient version

Purpose. Find x∗ that minimizes F (x), where x = [x1, . . . , xn]⊤ ∈
IRn is the vector of unknown parameters and the scalar objective func-
tion F is twice continuously differentiable. The user must supply a
subroutine that evaluates F (x).

Method. The algorithm is a quasi-Newton method with BFGS up-
dating of the inverse Hessian1) and soft line search,, see e.g. [7, Chap-
ters 9 (and 6)] or [18, Chapters 3, 4 and 8], except for the fact that
first order derivatives are approximated by finite differences.

Origin. MI1F uses a modified version of the subroutine VA13CD from
[14], modified such that it is consistent with the other routines in
this package. In the Harwell Library VA13CD is called from the driver
routine VA13AD.

Use. The subroutine call is

mi0f(calf,n,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

calf Subroutine written by the user with the following declaration

void calf(const int *N, const double x[],

double *f)

It must calculate the value of the objective function at the
point x = [x[0], . . . , x[n-1]]⊤, n = *N, and store the function
value as *f = F (x).

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

x double array with n elements.
On entry: Initial approximation to x∗.
On exit : Computed solution.

dx double.

1) The Hessian H(x) is the matrix of second derivatives, Hij =
∂2F

∂xi∂xj

.

16 2.1. MI0F

dx does not enter into the computations, but is present to be
consistent with the other methods described in this report.

eps double. Desired accuracy.
eps must be set by the user to the desired absolute accuracy
of the solution. The algorithm stops when it suggests to
change the iterate from xk to xk+hk with ‖hk‖ < eps·‖xk‖.
Must be positive. Is not changed.

maxfun integer.
On entry: Upper bound on the number of calls of calf. Must
be positive.
On exit : Number of calls of calf.

w double array with iw elements. Work space.
On entry: The values of w are not used.
On exit : w[0] = F (X), the computed minimum.

iw integer. Length of work space w.
Must be at least 1

2n(n+15) + 1. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 1 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration successful.
icontr = 2 : Iteration stopped because the maximum num-

ber of calls to calf was exceeded, see parameter
maxfun.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −5 : eps ≤ 0.0
icontr = −6 : maxfun ≤ 0
icontr = −8 : iw < n(n+4)
icontr = −9 : icontrentry < 0

2. Unconstrained Optimization 17

Example. Minimize

F (x) = sin(x1x2) + 2ex1+x2 + e−x1−x2 .

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI0F 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void calf(const int *n, const double x[],

double *f)

{

double cexp;

/* Function Body */

cexp = exp(x1 + x2);

*f = sin(x1 * x2) + cexp * 2 + 1 / cexp;

} /* calf */

static int opti(int icontr)

{

#define N 2

#define IW max(N*(N+4),N*(N+15)/2+1)

extern void mi0f(

void (*calf)(),

int n,

double x[],

const double *dx,

const double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i,k;

double w[IW], x[2];

int maxfun, method = icontr;

18 2.1. MI0F

double eps, dx;

/* SET PARAMETERS */

eps = (method==0) ? 0.005 : 1e-10;

maxfun = (method==0) ? 4 : 19;

dx = 101;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 2.;

switch (method) {

case 0:

printf("Optimize : non-gradient method\n\n");

break;

case 1:

printf("Optimize : gradient method with approx. gradient\n\n");

break;

default:

printf("Not Implemented\n\n");

break;

}

mi0f(calf, N, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

switch (icontr) {

case 3:

printf("NB: maximum does not alter function\n\n");

break;

case 1:

/* NOT an error : message below would only cause confusion

printf("NB: accuracy limited by errors in f\n\n");

*/

break;

case 2:

printf("NB: maximum number of %s exceeded\n\n",

(method == 0) ? "iterations" : "function calls");

break;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("Solution: %18.10e\n",x[0]);

for (i = 1; i < N; ++i) {

for (k = 1; k <52-18 ; ++k) putchar(’ ’);

printf("%18.10e\n\n",x[i]);

}

2. Unconstrained Optimization 19

printf("Number of %s: %d\n\n",

(method == 1) ? "iterations" : "function calls" ,

maxfun);

printf("Function value at the solution: %18.10e\n\n\n",w[0]);

return 0;

}

int main()

{

opti(0); /* non-gradient method */

opti(1); /* gradient method with numerical gradient */

return 0;

}

We get the results

Optimize : non-gradient method

Solution: -1.4423577074e+00

1.0931956724e+00

Number of function calls: 26

Function value at the solution: 1.8284544974e+00

Optimize : gradient method with approx. gradient

Solution: -1.4375562056e+00

1.0911558152e+00

Number of iterations: 14

Function value at the solution: 1.8284295839e+00

20 2.2. MI0L2

2.2. MI0L2. Minimization of the ℓ2-Norm of a
Vector Function (Least Squares)

Non-gradient version

Purpose. Find x∗ that minimizes F (x), where

F (x) = 1
2

m∑

i=1

(fi(x))2 . (2.1)

Here x = [x1, . . . , xn]⊤ ∈ IRn is the vector of unknown parameters and
fi, i =1, . . . , m is a set of functions that are twice continuously dif-
ferentiable. The user must supply a subroutine that evaluates f(x).

Method. The method is a compromise between three different al-
gorithms for minimizing a sum of squares, namely Newton-Raphson,
Steepest Descent, and Marquardt. Moreover it automatically obtains
and improves an approximation to the first derivative matrix follow-
ing the ideas of Broyden.

Origin. MI0L2 uses a modified version of the subroutine VA05AD from
[14], modified such that it is consistent with the other routines in this
package.

Choice of scaling. The method requires some step length control,
for which the “distance” between two estimates a = [a1, . . . , an]⊤ and
b = [b1, . . . , bn]⊤ of the vector x = [x1, . . . , xn]⊤ is




n∑

j=1

(aj − bj)
2





1
2

(2.2)

Therefore it is important that the user shall scale the variables, per-
haps by multiplying them by appropriate constants, so that their mag-
nitudes are similar.

Accuracy. Note that a normal return from the subroutine occurs
when it is predicted that the required accuracy has been obtained.
Sometimes this prediction may be wrong, and we quote from [14]:

2. Unconstrained Optimization 21

which has been shown by an example with M = 60, N = 30, hav-

ing the property that the correct final value of the sum of squares,

F (x) is large. Here the subroutine finishes too soon, but the fi-

nal answer was very close to the required one. Experience with

the subroutine on about thirty other examples has shown that the

convergence criterion is usually adequate.

The next section describes a method that often works much better
than this method on large residual problems.

Use. The subroutine call is

mi0l2(calf,n,m,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

calf Subroutine written by the user with the following declara-
tion

void calf(const int *N, const int *M,

const double x[], double *f)

It must calculate the value of the vector function at the point
x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M and store the func-
tion values as,

f[i-1] = fi(x), i=1, . . . , m.

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

x double array with n elements.
On entry: Initial approximation to x∗.
On exit : Computed solution.

dx double.
dx is used as the absolute step length in the difference approx-
imations which serve as estimates for the partial derivatives
of the vector function. See section 1.3 for further details. See
also Choice of scaling above. dx must be non-zero. dx is
not altered.

22 2.2. MI0L2

eps double. Desired accuracy.
eps must be set by the user to the desired absolute accuracy
of the solution. Must be positive. The required accuracy
is considered obtained when it is predicted that the best
calculated value of F (x) is not more than eps greater than
the minimum value. See Accuracy above.

maxfun integer.
On entry: Upper bound on the number of calls of calf. As
an exception to this upper bound, at least (n + 1) calls of
calf are made due to the nature of the non-gradient method.
Must be positive.
On exit : Number of calls of calf.

w double array with iw elements. Work space.
On entry: The values of w are not used.
On exit : The function values at the computed solution are
stored in the first m elements of w as,

w[i-1] = fi(x), i=1, . . . , m.

The approximations to the partial derivatives at the com-
puted solution are stored in the next n ·m elements of w as,

w[n(i-1)+(j-1)+m] =
∂fi
∂xj

(x), i= 1, . . . , m, j=1, . . . , n.

iw integer. Length of work space w.
Must be at least 2nm + 2n2 + 3m + 5n. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 0 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration successful.
icontr = 1 : Iteration successful.
icontr = 2 : Iteration stopped because the maximum num-

ber of calls to calf was exceeded, see parameter
maxfun.

2. Unconstrained Optimization 23

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −5 : dx = 0.0
icontr = −6 : eps ≤ 0.0
icontr = −7 : maxfun ≤ 0
icontr = −9 : iw < 2nm + 2n2 + 3m + 5n

icontr = −10 : icontrentry < 0

24 2.2. MI0L2

Numerical gradient version

Purpose. Find x∗ that minimizes F (x), where

F (x) = 1
2

m∑

i=1

(fi(x))2 . (2.3)

Here x = [x1, . . . , xn]⊤ ∈ IRn is the vector of unknown parameters
and fi, i =1, . . . , m is a set of functions that are twice continuously
differentiable. The user must supply a subroutine that evaluates f (x).

Method. The algorithm amounts to a variation on Newton’s method
in which part of the Hessian matrix is computed exactly and part is
approximated by the secant (quasi-Newton) updating method. Once
the iterates come sufficiently close to a local solution, they usually
converge quite rapidly. To promote convergence from poor starting
guesses, the algorithm uses a model/trust region technique along with
an adaptive choice of the model Hessian. Consequently, the algo-
rithm sometimes reduces to a Gauss-Newton or Levenberg-Marquardt
method (see e.g. [8, Section 5.2]). On large residual problems (in
which F (x∗) is large), the present method often works much better
than these methods. The algorithm is identical to that described in
[5] and [6] except for the fact that first order derivatives are approxi-
mated by finite differences.

Origin. Subroutine NL2SOL from [5] and [6]. Available from Netlib.

Use. The subroutine call is

mi0l2(calf,n,m,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

calf Subroutine written by the user with the following declara-
tion

void calf(const int *N, const int *M,

const double x[], double f[])

It must calculate the value of the vector function at the point
x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M and store the func-
tion value as,

f[i-1] = fi(x), i=1, . . . , m.

The name of this subroutine can be chosen freely by the user.

2. Unconstrained Optimization 25

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

x double array with n elements.

On entry: Initial approximation to x∗.
On exit : Computed solution.

dx double.
dx does not enter into the computations, but is present to be
consistent with the other methods described in this report.

eps double.

On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖.
Must be positive.

On exit : If eps was chosen too small, then the iteration stops
when there is indication that rounding errors dominate, and
eps is set to 0.0. Otherwise not changed.

maxfun integer.
On entry: Upper bound on the number of calls of calf. Must
be positive.

On exit : Number of calls of calf.

w double array with iw elements. Work space.

On entry: The values of w are not used.
On exit : The function values at the computed solution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

iw integer. Length of work space w.
Must be at least m(2n+4)+ 1

2n(3n+33)+93. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 1 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration succesful.
icontr = 1 : Iteration succesful.

26 2.2. MI0L2

icontr = 2 : Iteration stopped, because the maximum num-
ber of calls of calf was exceeded, see parame-
ter maxfun. The best solution approximation is
returned in x.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −6 : eps ≤ 0.0
icontr = −7 : maxfun ≤ 0
icontr = −9 : iw < m(2n+4) + 1

2n(3n+33) +
93

icontr = −10 : icontrentry < 0

Example. Minimize

F (x) = 1
2

3∑

i=1

f2
i (x) ,

where the fi are given by (1.6), page 9.

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI0L2 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void calf(const int *n, const int *m,

const double x[], double f[])

{

double x2_2 = x2*x2, x2_3 = x2_2*x2;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

2. Unconstrained Optimization 27

} /* calf */

static int opti(int icontr)

{

#define N 2

#define M 3

#define IW max(2*M*N+2*N*N+3*M+5*N,(2*N+4)*M+N*(3*N+33)/2+93)

extern void mi0l2(

void (*calf)(),

int n,

int m,

double x[],

double *dx,

double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i, j;

double w[IW], x[N];

int maxfun, method = icontr;

double eps, dx;

/* SET PARAMETERS */

dx = 0.07;

eps = 1e-10;

maxfun = 40;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

switch (method) {

case 0:

printf("\nOptimize with non-gradient method\n\n");

break;

case 1:

printf("\nOptimize with approx. gradient method\n\n");

break;

}

mi0l2(calf, N, M, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

28 2.2. MI0L2

printf("INPUT ERROR. PARAMETER NUMBER %d IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

/* RESULTS FROM OPTIMIZATION */

switch (icontr) {

case 1:

printf("Sum of squares fails to decrease\n\n");

break;

case 2:

printf("Upper Limit for Function Evaluations Exceeded.\n\n");

break;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("Solution: %18.10e\n",x[0]);

for (i = 1; i < N; ++i) {

for (j = 1; j <52-18 ; ++j) putchar(’ ’);

printf("%18.10e\n",x[i]);

}

printf("Number of %s: %d\n\n",

(method == 1) ? "iterations" : "function calls" ,

maxfun);

printf("Function Values at the Solution: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

if (method == 0) {

printf("Approx. of partial derivatives\n");

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

printf("%18.10e\n",w[M + N*i + j]);

}

return 0;

}

int main()

{

opti(0); /* non-gradient method */

opti(1); /* gradient method with numerical gradient */

return 0;

}

2. Unconstrained Optimization 29

We get the results

Optimize with non-gradient method

Solution: 3.0000056975e+00

5.0000129484e-01

Number of function calls: 25

Function Values at the Solution: 1.0357872369e-06

-3.8858482787e-07

-2.0719062168e-06

Approx. of partial derivatives

-4.8186487403e-01

2.9893557811e+00

-7.6599384516e-01

3.1860482934e+00

-9.1547852714e-01

2.5503763257e+00

Optimize with approx. gradient method

Solution: 3.0000000000e+00

5.0000000000e-01

Number of iterations: 10

Function Values at the Solution: 1.7208456882e-13

1.5329959524e-12

2.8510527272e-12

30 2.3. MI0L1

2.3. MI0L1. Minimization of the ℓ1-Norm of a
Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) =

m∑

i=1

| fi(x) | . (2.4)

Here x = [x1, . . . , xn]⊤ ∈ IRn is the vector of unknown parameters
and fi, i =1, . . . , m is a set of functions that are twice continuously
differentiable. The user must supply a subroutine that evaluates f (x).

Method. The method is iterative. It is based on successive lineariza-
tions of the non-linear functions fi, combining a first order trust region
method with a local method which uses approximate second order in-
formation. The method is identical to that described in [13], except
from the fact that first order derivatives are approximated by finite
differences.

Origin. Subroutine L1NLS from [11].

Remark. The trust region around the current x is the ball centered
at x with radius ∆ defined so that the linearizations of the non-linear
functions fi are reasonably accurate for all points inside the ball. Dur-
ing iteration this bound is adjusted according to how well the linear
approximations centered at the previous iterate predict the gain in F .
The user has to give an initial value for ∆. If the functions are almost
linear, then we recommend to use an estimate of the distance between
x0 and the solution x∗. Otherwise, we recommend ∆0 = 0.1‖x0‖.
However the initial choice of ∆ is not critical because it is adjusted
by the subroutine during the iteration.

Use. The subroutine call is

mi0l1(calf,n,m,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

2. Unconstrained Optimization 31

calf Subroutine written by the user with the following declaration

void calf(const int *N, const int *M,

const double x[], double f[])

It must calculate the value of the vector function at the point
x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M, and store the
function value as,

f[i-1] = fi(x), i=1, . . . , m.

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

x double array with n elements.

On entry: Initial approximation to x∗.
On exit : Computed solution.

dx double.

On entry: dx must be set by the user to an initial value of
the trust region radius, which controls the step length of the
iterations. See Remark above. Must be positive.
On exit : Final trust region radius.

eps double.

On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖. Must be positive.

On exit : If eps was chosen too small, then the iteration
stops when there is indication that rounding errors dominate,
and eps is set to 0.0 and icontr is set to 2. Otherwise not
changed.

maxfun integer.
On entry: Upper bound on the number of calls of calf. Must
be positive.

On exit : Number of calls of calf.

w double array with iw elements. Work space.

32 2.3. MI0L1

On entry: The values of w are not used.
On exit : The function values at the computed solution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

iw integer. Length of work space w.
Must be at least 2nm + 5n2 + 11n + 5m + 5. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 1 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration succesful.
icontr = 1 : Iteration succesful.
icontr = 2 : Iteration stopped, either because eps is too

small, or because the maximum number of calls
of calf was exceeded, see parameter maxfun.
The best solution approximation is returned in
x.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −5 : dx ≤ 0.0
icontr = −6 : eps ≤ 0.0
icontr = −7 : maxfun ≤ 0
icontr = −9 : iw < 2nm+5n2 +11n+5m+5
icontr = −10 : icontrentry ≤ 0

Example. Minimize

F (x) =
3∑

i=1

|fi(x)| ,

where the fi are given by (1.6), page 9.

#include <stdio.h>

#include <math.h>

#include "f2c.h"

2. Unconstrained Optimization 33

/* TEST OF MI0L1 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void calf(const int *n, const int *m,

const double x[], double f[])

{

double x2_2 = x2*x2, x2_3 = x2_2*x2;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

} /* calf */

static int opti(int icontr)

{

#define N 2

#define M 3

#define IW 2*N*M+5*N*N+11*N+5*M+5

extern void mi0l1(

void (*calf)(),

int n,

int m,

double x[],

double *dx,

double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i, j;

double w[IW], x[2];

int index[8], maxfun;

double dx, eps;

/* SET PARAMETERS */

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

dx = 0.1;

34 2.3. MI0L1

mi0l1(calf, N, M, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

printf("\nRESULTS FROM OPTIMIZATION\n\n");

if ((icontr == 0) || (icontr == 1)) {

printf("Iteration succesful.\n\n");

}

if (icontr == 2) {

printf("Maximum number of function evaluations exceeded.\n\n");

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("Solution: %18.10e\n",x[0]);

for (j = 1; j < N; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",x[j]);

}

printf("Number of iterations: %d\n\n", maxfun);

printf("Function values at the solution: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

return 0;

}

int main()

{

opti(1);

return 0;

}

We get the results

RESULTS FROM OPTIMIZATION

Iteration succesful.

Solution: 3.0000000000e+00

5.0000000000e-01

Number of iterations: 11

Function values at the solution: 2.2204460493e-16

4.4408920985e-16

4.4408920985e-16

2. Unconstrained Optimization 35

2.4. MI0INF. Minimization of the ℓ
∞

-Norm of a
Vector Function

Non-gradient version

Purpose. Find x∗ that minimizes F (x), where

F (x) = max
i

|fi(x) | . (2.5)

Here x = [x1, . . . , xn]⊤ ∈ IRn is the vector of unknown parameters
and fi, i =1, . . . , m is a set of functions that are twice continuously
differentiable. The user must supply a subroutine that evaluates f (x).
An important application of the subroutine is non-linear minimax data
fitting, and it is also an efficient method for finding a zero of a set of
non-linear equations.

Origin. This is a modified version of VG02AD from [14], modified such
that it is consistent with the other routines in this package.

Remark. The trust region around the current x is the ball centered
at x with radius ∆ defined so that the linearizations of the non-linear
functions fi are reasonably accurate for all points inside the ball.
During iteration this bound is adjusted according to how well the
linear approximations centered at the previous iterate predict the gain
in F .
The user has to give an initial value for ∆. If the functions are almost
linear, then we recommend to use an estimate of the distance between
x0 and the solution x∗. Otherwise, we recommend ∆0 = 0.1‖x0‖.
However the initial choice of ∆ is not critical because it is adjusted
by the subroutine during the iteration.

Use. The subroutine call is

mi0inf(calf,n,m,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

36 2.4. MI0INF

calf Subroutine written by the user with the following declaration

void calf(const int *N, const int *M,

const double x[], double f[])

It must calculate the values of the functions at the point
x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M and store these
numbers as follows,

f[i-1] = fi(x), i=1, . . . , m.

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

x double array with n elements.
On entry: Initial approximation to x∗.
On exit : Computed solution.

dx double.

dx must be set by the user to an initial value of the trust
region radius, which controls the step length of the iterations.
See Remark above. Must be positive.

eps double.

On entry: Desired accuracy.
The algorithm stops when x = [x[0], . . . , x[n-1]]⊤ is a
nearby stationary point, more precisely when
maxi |fi(x)|−min‖h‖≤‖x‖ (maxi |fi(x) + (∆fi(x),h)|) < eps

Must be positive.

On exit : If eps was chosen too small, then the iteration stops
when there is indication that rounding errors dominate. If
the inequality above is satisfied, eps will not be changed,
otherwise eps will be set to 0.0.

maxfun integer.
On entry: Upper bound on the number of calls of calf. Must
be positive.

On exit : Number of calls of calf. If maxfun is exceeded, eps
will be set to 0.0.

w double array with iw elements. Work space.

2. Unconstrained Optimization 37

On entry: The values of w are not used.
On exit : The function values at the computed solution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

iw integer. Length of work space w.
Must be at least nm+2n2 +3m+13m+16. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 0 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration succesful.
icontr = 1 : Iteration succesful.
icontr = 2 : Iteration stopped, because the maximum num-

ber of calls of calf was exceeded, see parame-
ter maxfun. The best solution approximation is
returned in x.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −5 : dx ≤ 0.0
icontr = −6 : eps ≤ 0.0
icontr = −7 : maxfun ≤ 0
icontr = −9 : iw < nm+2n2+3m+13m+16
icontr = −10 : icontrentry < 0

38 2.4. MI0INF

Numerical gradient version

Purpose. Find x∗ that minimizes F (x), where

F (x) = max
i

|fi(x) | . (2.6)

Here x = [x1, . . . , xn]⊤ ∈ IRn is the vector of unknown parameters
and fi, i =1, . . . , m is a set of functions that are twice continuously
differentiable. The user must supply a subroutine that evaluates f (x).

Method. The method is iterative. It is based on successive lineariza-
tions of the non-linear functions fi and uses constraints on the step
vector. The linearized problems are solved by a linear programming
technique. The method is described in [15], apart from the fact that
first order derivatives are approximated by finite differences.

Origin. The main part of the subroutine was written by K. Madsen
and was published as VE01AD in the the Harwell Subroutine Library
[14]. We use K. Madsen’s original subroutine SUB1W which is consis-
tent with the other subroutines in the present package

Remark. The user has to give an initial value for ∆, which appears in
the constraint ‖h‖ ≤ ∆, where h is the step between two consecutive
iterates. During iteration this bound (trust region radius) is adjusted
according to how well the current linear approximations predict the
actual gain in F .

If the functions fi are almost linear, then we recommend to use
a value for ∆0, which is an estimate of the distance between x0 and
the solution x∗. Otherwise, we recommend ∆0 = 0.1‖x0‖. However
the initial choice of ∆ is not critical because it is adjusted by the
subroutine during the iteration.

Use. The subroutine call is

mi0inf(calf,n,m,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

2. Unconstrained Optimization 39

calf Subroutine written by the user with the following declaration

void calf(const int *N, const int *M,

const double x[], double f[])

It must calculate the values of the functions at the point
x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M and store these
numbers as follows,

f[i-1] = fi(x), i=1, . . . , m.

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

x double array with n elements.

On entry: Initial approximation to x∗.
On exit : Computed solution.

dx double.

On entry: dx must be set by the user to an initial value of
the trust region radius, which controls the step length of the
iterations. See Remark above. Must be positive.
On exit : Final trust region radius.

eps double.

On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖. Must be positive.

On exit : If eps was chosen too small, then the iteration stops
when there is indication that rounding errors dominate, and
eps is set to 0.0 and icontr is set to 1.

maxfun integer.
On entry: Upper bound on the number of calls of calf. Must
be positive.

On exit : Number of calls of calf.

w double array with iw elements. Work space.

On entry: The values of w are not used.
On exit : The function values at the computed solution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

40 2.4. MI0INF

iw integer. Length of work space w.
Must be at least 2nm + n2 + 14n + 4m + 11. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 1 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration succesful.
icontr = 1 : Iteration stopped because rounding errors

dominate.

icontr = 2 : Iteration stopped, because the maximum num-
ber of calls of calf was exceeded, see parame-
ter maxfun. The best solution approximation is
returned in x.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −5 : dx ≤ 0.0
icontr = −6 : eps ≤ 0.0
icontr = −7 : maxfun ≤ 0
icontr = −9 : iw < 2nm+n2 +14n+4m+11
icontr = −10 : icontrentry < 0

Example. Minimize

F (x) = max
i

| fi(x) | ,

where the fi are given by (1.6), page 9.

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI0INF 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void calf(const int *n, const int *m,

2. Unconstrained Optimization 41

const double x[], double f[])

{

double x2_2 = x2*x2, x2_3 = x2_2*x2;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

}

static int opti(int icontr)

{

#define N 2

#define M 3

#define IW max(M*N+2*N*N+3*M+13*N+16,2*N*M+N*N+14*N+4*M+11)

extern void mi0inf(

void (*calf)(),

int n,

int m,

double x[],

double *dx,

double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

/* Local variables */

int i, j;

double w[IW], x[N];

double dx, eps;

int maxfun, method = icontr;

/* SET PARAMETERS */

maxfun = 34;

eps = 1e-10;

dx = (method==0) ? 0.07 : 0.1;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

switch (method) {

case 0:

printf("\nOptimize : non-gradient method\n\n");

42 2.4. MI0INF

break;

case 1:

printf("\nOptimize : approx. gradient method\n\n");

break;

}

mi0inf(calf, N, M, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

/* RESULTS FROM OPTIMIZATION */

switch (icontr) {

case 1:

printf("Solution surrounded by errors.\n\n");

break;

case 2:

printf("Upper Limit for Function Evaluations Exceeded.\n\n");

break;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("Solution: %18.10e\n",x[0]);

for (i = 1; i < N; ++i) {

for (j = 1; j <52-18 ; ++j) putchar(’ ’);

printf("%18.10e\n",x[i]);

}

printf("Number of %s: %d\n\n",

(method==1) ? "Iterations" : "Function Calls",

maxfun);

printf("Function values at the solution: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

return 0;

}

int main()

{

opti(0); /* non-gradient method */

opti(1); /* gradient method with numerical gradient */

return 0;

}

2. Unconstrained Optimization 43

We get the results

Optimize : non-gradient method

Solution: 3.0000000000e+00

5.0000000000e-01

Number of Function Calls: 22

Function values at the solution: 0.0000000000e+00

0.0000000000e+00

0.0000000000e+00

Optimize : approx. gradient method

Solution: 3.0000000000e+00

5.0000000000e-01

Number of Iterations: 12

Function values at the solution: -2.2204460493e-16

-4.4408920985e-16

-8.8817841970e-16

44 3.1. MI0CF

3. Constrained Optimization

3.1. MI0CF. Constrained Minimization of a Scalar
Function

Purpose. Find x∗ that minimizes F (x), where the vector of unknown
parameters x = [x1, . . . , xn]⊤ ∈ IRn must satisfy the following non-
linear equality and inequality constraints,

ci(x) = 0 , i = 1, 2, . . . , leq ,

ci(x) ≥ 0 , i = leq+1, . . . , l .

The objective function F and the constraint functions {ci} must be
twice continuously differentiable. The user must supply a subroutine
that evaluates F (x), {ci(x)}.
Method. The algorithm is iterative. It is based on successively
approximating the non-linear problem with quadratic problems, i.e.
at the current iterate the objective function is approximated by a
quadratic function and the constraints are approximated by linear
functions. The algorithm uses the so-called “Watch-dog technique” as
described in [4] and [20]. The quadratic programming algorithm is
described in [21], except from the fact that first order derivatives are
approximated by finite differences.

Origin. Harwell subroutine VF13AD from [14].

Use. The subroutine call is

mi0cf(calfc,n,l,leq,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

calfc Subroutine written by the user with the following declaration

void calfc(const int *N, const int *L,

const double x[],

double *f, double c[])

where n = *N, l = *L. It must calculate the value of the
objective function and the constraint functions at the point
x = [x[0], . . . , x[n-1]]⊤ and store these numbers as follows,

3. Constrained Optimization 45

*f = F (x),

c[i-1] = ci , i = 1, . . .l.

The name of the subroutine can be chosen freely by the user.

It is essential that the equality constraints (if any) are num-
bered first.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

l integer. Number of constraints, m.
Must be positive. Is not changed.

leq integer. Number of equality constraints, leq.
Must satisfy 0 ≤ leq ≤ min{l, n}. Is not changed.

x double array with n elements.

On entry: Initial approximation to x∗. It needs not satisfy
the constraints.
On exit : Computed solution.

dx double.

dx does not enter into the computations, but is present to be
consistent with the other methods described in this report.

eps double. Desired accuracy.
Must be set by the user to indicate the desired accuracy of
the results. Must be positive. The iteration stops when the
Kuhn-Tucker conditions are approximately satisfied within
a tolerance of eps. Is not changed.

maxfun integer.
On entry: Upper bound on the number of calls of calfc.
Must be positive.
On exit : Number of calls of calfc.

w double array with iw elements. Work space.
On entry: The values of w are not used.
On exit : The optimal objective function value and the con-
straint function values are stored in the following way,

w[0] = F (x), the computed minimum.
w[i] = ci(x), i = 1, . . . , l.

46 3.1. MI0CF

iw integer. Length of work space w.
Must be at least 5

2n(n+9) + (n+8)l + 15. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 1 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration succesful.
icontr = 1 : Iteration succesful.
icontr = 2 : Iteration stopped because the maximum num-

ber of calls of calfc was exceeded, see maxfun.

icontr = 3 : Iteration stopped due to problems with the
method. Try a new starting point.

icontr = 4 : Iteration stopped due to problems with the
method. Try a new starting point.

icontr = 5 : Iteration failed because it was not possible to
find a starting point satisfying all constraints.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : l ≤ 0
icontr = −4 : leq < 0 or leq > min{l, n}
icontr = −7 : eps ≤ 0.0
icontr = −8 : maxfun ≤ 0
icontr = −10 : iw < 5

2n(n+9) + (n+8)l + 15
icontr = −11 : icontrentry ≤ 0

Example. Minimize

F (x) = sin(x1x2) + 2ex1+x2 + e−x1−x2

subject to the constraints

c1(x) ≡ 1 − x2
1 − x2

2 ≥ 0

c2(x) ≡ x2 − x3
1 ≥ 0

c3(x) ≡ x1 + 2x2 ≥ 0

3. Constrained Optimization 47

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI0CF 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void calfc(const int *n, const int *l,

const double x[],

double *f, double c[])

{

double x1_2 = x1*x1, x1_3 = x1_2*x1;

double cexp;

/* Function Body */

cexp = exp(x1 + x2);

*f = sin(x1 * x2) + cexp * 2 + 1 / cexp;

/* CONSTRAINTS */

c[0] = -x1_2 - x2 * x2 + 1.;

c[1] = -x1_3 + x2;

c[2] = x1 + x2 * 2.;

} /* calfc */

static int opti(int icontr)

{

#define N 2

#define L 3

#define LEQ 0

#define IW 5*N*N/2+45*N/2+L*(N+8)+15

extern void mi0cf(

void (*calfc)(),

int n,

int l,

int leq,

double x[],

const double *dx,

const double *eps,

int *maxfun,

double w[],

int iw,

int *icontr);

48 3.1. MI0CF

/* Local variables */

int i, j;

double w[IW], x[2];

double dx, eps;

int maxfun;

/* SET PARAMETERS */

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

/* GRADIENT CHECK OR MINIMIZATION */

dx = 0.1;

mi0cf(calfc, N, L, LEQ, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

printf("RESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

case 1:

break;

case 2:

printf("NB: maximum number of function evaluations exceeded");

break;

case 3:

case 4:

printf("Method has failed. Try a new starting point\n");

return icontr;

case 5:

printf("MI0CF has failed to find a starting point\n");

printf("satisfying all of the constraints.\n\n");

return icontr;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("Solution: %18.10e\n",x[0]);

for (i = 1; i < N; ++i) {

for (j = 1; j <52-18 ; ++j) putchar(’ ’);

printf("%18.10e\n\n",x[i]);

}

printf("Number of iterations: %d\n\n", maxfun);

printf("Function value at the solution: %21.10e\n\n\n",w[0]);

for (j = 1; j <= L; ++j) {

3. Constrained Optimization 49

if (j==1)

printf("Constraint values at the solution: %18.10e\n",w[1]);

else {

for (i = 1; i <54-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

}

return 0;

}

int main()

{

opti(1); /* optimize */

return 0;

}

We get the results

RESULTS FROM OPTIMIZATION

Solution: -8.2645035400e-01

5.6300960240e-01

Number of iterations: 10

Function value at the solution: 2.3895160146e+00

Constraint values at the solution: -2.3047785902e-11

1.1274918783e+00

2.9956885079e-01

50 3.2. MI0CL1

3.2. MI0CL1. Linearly Constrained Minimization
of the ℓ1-Norm of a Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) =
m∑

i=1

| fi(x) | , (3.1a)

and where the vector of unknown parameters x = [x1, . . . , xn]⊤ ∈ IRn

must satisfy the following linear equality and inequality constraints,

ci(x) ≡ d⊤
i x + ci = 0 , i = 1, 2, . . . , leq ,

ci(x) ≡ d⊤
i x + ci ≥ 0 , i = leq+1, . . . , l

(3.1b)

for given vectors {di} and scalars {ci}. The fi, i =1, . . . , m is a set
of functions that are twice continuously differentiable. The user must
supply a subroutine that evaluates f (x).

Method. The algorithm is iterative. It is based on successive lin-
earizations of the non-linear functions fi, combining a first order trust
region method with a local method that uses approximate second or-
der information. The method is described in [13].

Origin. Subroutine L1NLS by Jørgen Hald [11].

Remarks. The trust region around the current x is the ball centered
at x with radius ∆ defined so that the linearizations of the non-linear
functions fi are reasonably accurate for all points inside the ball. Dur-
ing iteration this bound is adjusted according to how well the linear
approximations centered at the previous iterate predict the gain in F .

The user has to give an initial value for ∆. If the functions are
almost linear, then we recommend to use an estimate of the dis-
tance between x0 and the solution x∗. Otherwise, we recommend
∆0 = 0.1‖x0‖. However the initial choice of ∆ is not critical because
it is adjusted by the subroutine during the iteration.

A solution is said to be “regular” when it is a strict local minimum,
i.e. there exists a positive number K such that

F (x) − F (x∗) ≥ K‖x− x∗‖

for any feasible x near x∗. Otherwise, the solution is said to be “sin-

gular”.

3. Constrained Optimization 51

Use. The subroutine call is

mi0cl1(calf,n,m,l,leq,c,dc,x,&dx,&eps,&maxfun,w,iw,&icontr

The parameters are

calf Subroutine written by the user with the following declaration

void calf(const int *N, const int *M,

const double x[], double f[])

It must calculate the value of the objective function at the
point x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M and store the
function values as,

f[i-1] = fi(x), i=1, . . . , m.

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

l integer. Number of constraints, l.
Must be positive. Is not changed.

leq integer. Number of equality constraints, leq.
Must satisfy 0 ≤ leq ≤ min{l, n}. Is not changed.

c double array with l elements.
The constant terms in the constraints (3.1b) are stored in
the following way

c[i-1] = ci, i = 1, . . . , l .

Is not changed.

dc double array with l·n elements. The coefficients of the con-
straints (3.1b) stored in the following way,

dc[(i-1)n+(j-1)] = d
(j)
i , i = 1, . . . , l, j = 1, . . . , n .

Is not changed.

x double array with n elements.
On entry: Initial approximation to x∗. It needs not satisfy
the constraints.
On exit : Computed solution.

dx double.

52 3.2. MI0CL1

On entry: dx must be set by the user to an initial value of
the trust region radius, which controls the step length of the
iterations. See Remarks above. Must be positive.
On exit : Final trust region radius.

eps double.

On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖.
Must be positive.

On exit : eps will contain the step length used in the last
iteration. If eps was chosen too small, then the iteration
stops when there is indication that rounding errors dominate,
and icontr is set to 2.

maxfun integer.
On entry: Upper bound on the number of calls of calf. Must
be positive.

On exit : Number of calls of calf.

w double array with iw elements. Work space.

On entry: The values of w are not used.
On exit : The function values at the computed solution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

iw integer. Length of work space w.
Must be at least 2nm+5n2 +10n+5m+4l. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 1 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration succesful. Regular solution.
icontr = 1 : Iteration succesful. Singular solution.
icontr = 2 : Iteration stopped, either because eps is too

small, or because the maximum number of calls
of calf was exceeded, see parameter maxfun.
The best solution approximation is returned in
x.

3. Constrained Optimization 53

icontr = 3 : The subroutine failed to find a point x satis-
fying all the constraints. The feasible region is
presumably empty.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −4 : l ≤ 0
icontr = −5 : leq < 0 or leq > min{l, n}
icontr = −9 : dx = 0.0
icontr = −10 : eps ≤ 0.0
icontr = −11 : maxfun ≤ 0
icontr = −13 : iw < 2nm+5n2+5m+10n+4l

icontr = −14 : icontrentry ≤ 0

Example. Minimize

F (x) =

3∑

i=1

|fi(x)| ,

subject to the constraint

c(x) ≡ −x1 + x2 + 2 ≥ 0 .

The fi are given by (1.6), page 9.

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI0CL1 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void calf(const int *n, const int *m,

const double x[], double f[])

{

double x2_2 = x2*x2, x2_3 = x2_2*x2;

54 3.2. MI0CL1

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

} /* calf */

static int opti(int icontr)

{

#define N 2

#define M 3

#define L 1

#define LEQ 0

#define IW 2*M*N+5*N*N+5*M+10*N+4*L

extern void mi0cl1(

void (*calf)(),

int n,

int m,

int l,

int leq,

const double c[],

const double dc[],

double x[],

double *dx,

double *eps,

int *maxfun,

double *w,

int iw,

int *icontr);

/* Local variables */

int i, j;

double c[1];

double dc[2], w[IW], x[2];

double dx, eps;

int maxfun;

/* SET PARAMETERS */

c[0] = 2.;

dc[0] = -1.;

dc[1] = 1.;

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

3. Constrained Optimization 55

dx = 0.1;

mi0cl1(calf, N, M, L, LEQ, c, dc, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

printf("Iteration successful, regular solution\n\n");

break;

case 1:

printf("Iteration successful, singular solution\n\n");

break;

case 2:

printf("NB: Required accuracy not achieved\n\n");

break;

case 3:

printf("No feasible point found - check your constraints\n");

return 3;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("Solution: %18.10e\n",x[0]);

for (i = 1; i < N; ++i) {

for (j = 1; j <52-18 ; ++j) putchar(’ ’);

printf("%18.10e\n",x[i]);

}

printf("Number of calls of calf: %d\n\n", maxfun);

printf("Function values at the solution: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

return 0;

}

int main()

{

opti(1);

return 0;

}

56 3.2. MI0CL1

We get the results

RESULTS FROM OPTIMIZATION

Iteration successful, regular solution

Solution: 2.3660254038e+00

3.6602540378e-01

Number of calls of calf: 9

Function values at the solution: -2.2204460493e-16

2.0096189432e-01

3.7500000000e-01

3. Constrained Optimization 57

3.3. MI0CIN. Linearly Constrained Minimax
Optimization of a Vector Function

Purpose. Find x∗ that minimizes F (x), where

F (x) = max
i

{ fi(x) } , (3.2a)

and where the vector of unknown parameters x = [x1, . . . , xn]⊤ ∈ IRn

must satisfy the following linear equality and inequality constraints,

ci(x) ≡ d⊤
i x + ci = 0 , i = 1, 2, . . . , leq ,

ci(x) ≡ d⊤
i x + ci ≥ 0 , i = leq+1, . . . , l

(3.2b)

for given vectors {di} and scalars {ci}. The fi, i =1, . . . , m is a set
of functions that are twice continuously differentiable. The user must
supply a subroutine that evaluates f (x).

Method. The algorithm is iterative. It is based on successive lin-
earizations of the non-linear functions fi, combining a first order trust
region method with a local method that uses approximate second or-
der information. The method is described in [12], except from the fact
that first order derivatives are approximated by finite differences.

Origin. Subroutine MLA1QS by Jørgen Hald [11], translated from For-
tran to C by the Bandler Group, [1].

Remarks. The trust region around the current x is the ball centered
at x with radius ∆ defined so that the linearizations of the non-linear
functions fi are reasonably accurate for all points inside the ball. Dur-
ing iteration this bound is adjusted according to how well the linear
approximations centered at the previous iterate predict the gain in F .

The user has to give an initial value for ∆. If the functions are
almost linear, then we recommend to use an estimate of the dis-
tance between x0 and the solution x∗. Otherwise, we recommend
∆0 = 0.1‖x0‖. However the initial choice of ∆ is not critical because
it is adjusted by the subroutine during the iteration.

A solution is said to be “regular” when it is a strict local minimum,
i.e. there exists a positive number K such that

F (x) − F (x∗) ≥ K‖x− x∗‖
for any feasible x near x∗. Otherwise, the solution is said to be “sin-

gular”.

58 3.3. MI0CIN

MI0CIN can also be used to compute a linearly constrained mini-
mizer of the ℓ∞-norm of f ,

F (x) = max
i

| fi(x) | . (3.3a)

For that purpose we introduce the extended vector function
f̂ : IRn 7→ IR2m defined by

f̂i(x) =

{
fi(x) for i = 1, 2, . . . , m

−fi−m(x) for i = m+1, . . . , 2m
. (3.3b)

It is easily seen that max
i=1, . . . , 2m

{f̂i(x)} = max
i=1, . . . , m

{|fi(x)|}.

Use. The subroutine call is

mi0cin(calf,n,m,l,leq,c,dc,x,&dx,&eps,&maxfun,w,iw,&icontr)

The parameters are

calf Subroutine written by the user with the following declaration

void calf(const int *N, const int *M,

const double x[], double f[])

It must calculate the value of the objective function at the
point x = [x[0], . . . , x[n-1]]⊤, n = *N, m = *M and store the
function value as,

f[i-1] = fi(x), i=1, . . . , m.

The name of this subroutine can be chosen freely by the user.

n integer. Number of unknowns, n.
Must be positive. Is not changed.

m integer. Number of functions, m.
Must be positive. Is not changed.

l integer. Number of constraints, l.
Must be positive. Is not changed.

leq integer. Number of equality constraints, leq.
Must satisfy 0 ≤ leq ≤ min{l, n}. Is not changed.

3. Constrained Optimization 59

c double array with l elements.
The constant terms in the constraints (3.2b) are stored in
the following way

c[i-1] = ci, i = 1, . . . , l .

Is not changed.

dc double array with l·n elements.
The coefficients of the constraints (3.2b) stored in the fol-
lowing way,

dc[(i-1)n+(j-1)] = d
(j)
i , i = 1, . . . , l, j = 1, . . . , n .

Is not changed.

x double array with n elements.

On entry: Initial approximation to x∗. It must satisfy the
constraints.
On exit : Computed solution.

dx double.

dx must be set by the user to an initial value of the trust
region radius, which controls the step length of the iterations.
See Remarks above. Must be positive.

eps double

On entry: Desired accuracy.
The algorithm stops when it suggests to change the iterate
from xk to xk+hk with ‖hk‖ < eps·‖xk‖.
Must be positive.

On exit : eps contains the length of the last step of the iter-
ation. If eps was chosen too small, then the iteration stops
when there is indication that rounding errors dominate, and
icontris set to 2.

maxfun integer.
On entry: Upper bound on the number of calls of calf. Must
be positive.

On exit : Number of calls of calf.

w double array with iw elements. Work space.

On entry: The values of w are not used.
On exit : The function values at the computed solution, i.e.

w[i-1] = fi(x), i=1, . . . , m.

60 3.3. MI0CIN

iw integer. Length of work space w.
Must be at least 2nm+5n2+4m+8n+4l+3. Is not changed.

icontr integer.
On entry: Controls the computation,
icontr = 1 : Start minimization.

On exit : Information about performance,
icontr = 0 : Iteration succesful. Regular solution.
icontr = 1 : Iteration succesful. Singular solution.
icontr = 2 : Iteration stopped, because eps is too small.

The best solution approximation is returned in
x.

icontr = 3 : Iteration stopped, because the maximum num-
ber of calls of calf was exceeded, see parame-
ter maxfun. The best solution approximation is
returned in x.

icontr < 0 : Computation did not start for the following
reason,
icontr = −2 : n ≤ 0
icontr = −3 : m ≤ 0
icontr = −4 : l ≤ 0
icontr = −5 : leq < 0 or leq > min{l, n}
icontr = −9 : dx = 0.0
icontr = −10 : eps ≤ 0.0
icontr = −11 : maxfun ≤ 0
icontr = −13 : iw < 2nm+5n2+5m+10n+4l

icontr = −14 : icontrentry ≤ 0

Example. Minimize

F (x) = max
i

| fi(x) | ,

subject to the constraint

c(x) ≡ −x1 + x2 + 2 ≥ 0 .

The fi are given by (1.6), page 9. This is a problem of computing
a linearly constrained minimizer of the ℓ∞-norm of f , and we extend
the vector f to f̂ as defined in (3.3b).

3. Constrained Optimization 61

#include <stdio.h>

#include <math.h>

#include "f2c.h"

/* TEST OF MI0CIN 23.11.2004 */

#define x1 x[0]

#define x2 x[1]

void calf(const int *n, const int *m,

const double x[], double f[])

{

int df_dim1 = *m;

double x2_2 = x2*x2, x2_3 = x2_2*x2;

int j,mhalf;

/* Function Body */

f[0] = 1.5 - x1 * (1. - x2); /* f1(x) */

f[1] = 2.25 - x1 * (1. - x2_2); /* f2(x) */

f[2] = 2.625 - x1 * (1. - x2_3); /* f3(x) */

/* find second half of function values */

for (mhalf = j = 3; j < df_dim1; j++) {

f[j] = -f[j-mhalf];

}

} /* calf */

static int opti(int icontr)

{

#define N 2

#define M 6

#define L 1

#define LEQ 0

#define IW 2*N*M+5*N*N+4*M+8*N+4*L+3

extern void mi0cin(

void (*calf)(),

int n,

int m,

int l,

int leq,

const double c[],

const double dc[],

double x[],

double *dx,

double *eps,

int *maxfun,

62 3.3. MI0CIN

double *w,

int iw,

int *icontr);

/* Local variables */

int i, j;

double c[1];

double dc[2], w[IW], x[2];

double dx, eps;

int maxfun;

/* SET PARAMETERS */

c[0] = 2.;

dc[0] = -1.;

dc[1] = 1.;

eps = 1e-10;

maxfun = 25;

/* SET INITIAL GUESS */

x1 = 1.;

x2 = 1.;

dx = .1;

mi0cin(calf, N, M, L, LEQ, c, dc, x, &dx, &eps, &maxfun, w, IW, &icontr);

if (icontr < 0) {

/* PARAMETER OUTSIDE RANGE */

printf("INPUT ERROR. PARAMETER NUMBER %d IS OUTSIDE ITS RANGE.\n",-icontr);

return -icontr;

}

printf("\nRESULTS FROM OPTIMIZATION\n\n");

switch (icontr) {

case 0:

printf("Iteration successful, regular solution\n\n");

break;

case 1:

printf("Iteration successful, singular solution\n\n");

break;

case 2:

printf("NB: Required accuracy not achieved\n\n");

break;

case 3:

printf("Maximum number of function evaluations exceeded\n");

break;

}

for (i = 1; i <= 23; ++i) putchar(’ ’);

printf("SOLUTION: %18.10e\n",x[0]);

for (j = 1; j < N; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",x[j]);

}

3. Constrained Optimization 63

printf("Number of calls of calf: %d\n\n", maxfun);

printf("Function values at the solution: %18.10e\n",w[0]);

for (j = 1; j < M; ++j) {

for (i = 1; i <52-18 ; ++i) putchar(’ ’);

printf("%18.10e\n",w[j]);

}

return 0;

}

int main()

{

opti(1);

return 0;

}

We get the results

RESULTS FROM OPTIMIZATION

Maximum number of function evaluations exceeded

Solution: 2.3682683689e+00

3.6826836888e-01

Number of calls of calf: 25

Function values at the solution: 3.8899604048e-03

2.0291995645e-01

3.7501513179e-01

-3.8899604048e-03

-2.0291995645e-01

-3.7501513179e-01

References 65

References

[1] J.W. Bandler with Simulation Optimization Systems Research

Laboratory, Department of Electrical and Computer Engineer-

ing, McMaster University, Hamilton, ON, Canada L8S 4K1

and with Bandler Corporation, Dundas, ON, Canada L9H 5E7

(WWW: http://www.sos.mcmaster.ca and email: bandlermc-
master.ca.)

[2] E.M.L. Beale (1958): On an Iterative Method of Finding a Local

Minimum of a Function of More than one Variable. Princeton
Univ. Stat. Techn. Res. Group, Techn. Rep. 25.

[3] P. Brock, K. Madsen, and H.B. Nielsen (2004): Robust C Sub-

routines for Non-Linear Optimization. IMM-Technical report-
2004-21, Informatics and Mathematical Modelling (IMM), Tech-
nical University of Denmark.

[4] R.M. Chamberlain, C. Lemarechal, H.C. Pedersen and M.J.D.
Powell (1982): The Watchdog Technique for Forcing Conver-

gence in Algorithms for Constrained Optimization. Mathemat-

ical Programming Study 16, 1 – 17.

[5] J.E. Dennis, D.M. Gay and R.E. Welsch (1981a): An adaptive

nonlinear least-squares algorithm. ACM Trans. Math. Software,
Vol. 7, pp. 348-368.

[6] J.E. Dennis, D.M. Gay and R.E. Welsch (1981b): ALGORITHM

573. NL2SOL - An adaptive nonlinear least-squares algorithm.

ACM Trans. Math. Software, Vol. 7, pp. 364-383.

[7] J.E. Dennis and R.B. Schnabel (1983): Numerical Methods for

Unconstrained Optimization and Nonlinear Equations. Prentice
Hall Series in Computational Mathematics.

[8] R. Fletcher (1987): Practical Methods of Optimization, 2nd edi-
tion. Wiley.

[9] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright (1983):
Computing forward difference intervals for numerical optimiza-

tion. SIAM J. Sci. Stat. Comput. Vol. 4, pp. 310-321.

[10] J. Hald (1981a): MMLA1Q, a Fortran Subroutine for Linearly

Constrained Minimax Optimization. Report NI-81-01, Institute
for Numerical Analysis (now part of IMM), Technical University
of Denmark.

66 References

[11] J. Hald (1981b): A 2-Stage Algorithm for Nonlinear ℓ1 Opti-

mization. Report NI-81-03, Institute for Numerical Analysis
(now part of IMM), Technical University of Denmark.

[12] J. Hald and K. Madsen (1981): Combined LP and Quasi-Newton

Methods for Minimax Optimization. Mathematical Pro-

gramming 20, 49 – 62.

[13] J. Hald and K. Madsen (1985): Combined LP and Quasi-Newton

Methods for Nonlinear ℓ1 Optimization. SIAM J. Numer.

Anal. 20, 68 – 80.

[14] Harwell Subroutine Library. (1984). Report R9185, Computer
Science and Systems Division, Harwell Laboratory, Oxfordshire,
OX11 ORA, England.

[15] K. Madsen (1975): An Algorithm for Minimax Solution of

Overdetermined Systems of Nonlinear Equations. J. IMA 16,
321 – 328.

[16] K. Madsen, P. Hegelund and P.C. Hansen (1991): Non-gradient

c Subroutines for Non-Linear Optimization. Report NI-91-04,
Institute for Numerical Analysis (now part of IMM), Technical
University of Denmark.

[17] K. Madsen, H.B. Nielsen and J.Søndergaard (2002): Robust Sub-

routines for Non-Linear Optimization. Technical Report IMM-
REP-2002-02, Informatics and Mathematical Modelling (IMM),
Technical University of Denmark.

[18] J. Nocedal and S.J. Wright (1999): Numerical Optimization.
Springer, New York.

[19] M.J.D. Powell (1964): An efficient method for finding the min-

imum of a function of several variables without calculating

derivatives, Computer Journal, Vol. 7, No. 2.

[20] M.J.D. Powell (1982): Extension to Subroutine VF02AD. In
R.F. Drenik and F. Kozin (eds.), “System Modeling and Opti-
mization”, Lecture Notes in Control and Informations

Sciences 38, Springer-Verlag, 529 – 538.

[21] M.J.D. Powell (1985): On the Quadratic Programming Algo-

rithm of Goldfarb and Idnani. Mathematical Programming

Study 25, 46 – 61.

[22] P. Wolfe (1982): Checking the Calculation of Gradients. ACM

TOMS., Vol. 8. pp. 337-343.

