94 research outputs found

    Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor

    Get PDF
    Available online 5 May 2020Carbon Capture, Utilisation and Storage (CCUS) technologies are utilised to minimise net CO2 emissions and hence mitigate the impact of anthropogenic emissions on the global climate. One example of CO2 utilisation is the production of carbon-neutral methane fuel via catalytic CO2 reduction with H2 (methanation). Thermal activation of a metal impregnated metal-organic framework (MOF), 1 wt%Ru/UiO-66 in the presence of H2 and CO2 provides in situ synthesis of a highly active methanation catalyst: H2 promotes the formation of Ru0 nanoparticles, and CO2 behaves as a mild oxidant to remove framework carbon and promote ZrO2 crystallisation. The nature of the active MOF-derived Ru0/ZrO2 catalyst was studied by PXRD, TEM, and XAS, and the evolution of the parent 1 wt%Ru/UiO-66 during thermal activation monitored in operando by synchrotron PXRD. The Ru impregnated Zr-based MOF collapses on heating in H2 and CO2 to form an amorphous C and Zr containing phase that subsequently crystallises as tetragonal (t-) ZrO2 nanoparticles. These t-ZrO2 nanoparticles undergo a subsequent phase transition to the more stable monoclinic (m-) ZrO2 polymorph. In situ activation of Ru/UiO-66 generates a highly active catalyst for CO2 methanation by transforming the MOF precursor into a (carbonfree) crystalline t-ZrO2 support that stabilises highly dispersed metallic Ru nanoparticles. This insight may guide the rational design of future MOF-derived catalystsRenata Lippi, Anita M. D, Angelo, Chaoen Li, Shaun C. Howard, Ian C. Madsen, Karen Wilson, Adam F. Lee, Christopher J. Sumby, Christian J. Doonan, Jim Patel, Danielle F. Kenned

    A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors

    Get PDF
    IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Understanding solvothermal crystallization of Mesoporous Anatase Beads by in situ synchrotron PXRD and SAXS

    No full text
    Submicrometer-sized mesoporous anatase (TiO2) beads have shown high efficiency as electrodes for dye-sensitized solar cells and are recoverable photocatalysts for the degradation of organic pollutants. The detailed mechanism for crystallization of the amorphous TiO2/hexadecylamine (HDA) hybrid beads occurring during the solvothermal process needs to be understood so that reaction parameters can be rationally refined for optimizing the synthesis. In this work, the solvothermal crystallization was monitored by in situ synchrotron powder X-ray diffraction (PXRD) and synchrotron small-angle X-ray scattering (SAXS) techniques. In situ PXRD provided crystallization curves, as well as the time evolution of anatase crystallite mean size and size distribution, and in situ SAXS provided complementary information regarding the evolution of the internal bead structure and the formation of pores during the course of the solvothermal process. By exploring the effects of temperature (140–180 °C), bead diameter (300 and 1150 nm), bead internal structure, and solvent composition (ethanol and ammonia concentrations) on this process, the crystallization was observed to progress 3-dimensionally throughout the entire bead due to solvent entrance after an initial fast partial dissolution of HDA from the nonporous precursor bead. On the basis of the kinetic and size evolution results, a 4-step crystallization process was proposed: (1) an induction period for precursor partial dissolution and anatase nucleation; (2) continued precursor dissolution accompanied by anatase nucleation and crystal growth; (3) continued precursor dissolution accompanied by only anatase crystal growth; and (4) complete crystallization with no significant Ostwald ripening
    corecore