30 research outputs found

    Ten strategies for avoiding and overcoming authorship conflicts in academic publishing

    Get PDF
    For better or for worse, authorship is a currency in scholarly research and advancement. In scholarly writing, authorship is widely acknowledged as a means of conferring credit but is also tied to concepts such as responsibility and accountability. Authorship is one of the most divisive topics both at the level of the research team and more broadly in the academy and beyond. At present, authorship is often the primary way to assert and receive credit in many scholarly pursuits and domains. Debates rage, publicly but mostly privately, regarding authorship. Here we attempt to clarify key concepts related to authorship informed by our collective experiences and anchored in relevant contemporary literature. Rather than dwelling on the problems, we focus on proactive strategies for creating more just, equitable, and transparent avenues for minimizing conflict around authorship and where there is adequate recognition of the entire process of knowledge generation, synthesis, sharing, and application with partners within and beyond the academy. We frame our ideas around 10 strategies that collectively constitute a roadmap for avoiding and overcoming challenges associated with authorship decisions

    Identify of a tilapia pheromone released by dominant males that primes females for reproduction

    Get PDF
    Knowledge of the chemical identity and role of urinary pheromones in fish is scarce, yet necessary to understand the integration of multiple senses in adaptive responses and the evolution of chemical communication. In nature, Mozambique tilapia (Oreochromis mossambicus) males form hierarchies and females mate preferentially with dominant territorial males which they visit in aggregations or leks

    Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan

    Get PDF
    Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become common place and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider howconservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further exploreways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmenta lmanagement and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users

    On the relevance of animal behavior to the management and conservation of fishes and fisheries

    Get PDF
    There are many syntheses on the role of animal behavior in understanding and mitigating conservation threats for wildlife. That body of work has inspired the development of a new discipline called conservation behavior. Yet, the majority of those synthetic papers focus on non-fish taxa such as birds and mammals. Many fish populations are subject to intensive exploitation and management and for decades researchers have used concepts and knowledge from animal behavior to support management and conservation actions. Dr. David L. G. Noakes is an influential ethologist who did much foundational work related to illustrating how behavior was relevant to the management and conservation of wild fish. We pay tribute to the late Dr. Noakes by summarizing the relevance of animal behavior to fisheries management and conservation. To do so, we first consider what behavior has revealed about how fish respond to key threats such as habitat alteration and loss, invasive species, climate change, pollution, and exploitation. We then consider how behavior has informed the application of common management interventions such as protected areas and spatial planning, stock enhancement, and restoration of habitat and connectivity. Our synthesis focuses on the totality of the field but includes reflections on the specific contributions of Dr. Noakes. Themes emerging from his approach include the value of fundamental research, management-scale experiments, and bridging behavior, physiology, and ecology. Animal behavior plays a key role in understanding and mitigating threats to wild fish populations and will become more important with the increasing pressures facing aquatic ecosystems. Fortunately, the toolbox for studying behavior is expanding, with technological and analytical advances revolutionizing our understanding of wild fish and generating new knowledge for fisheries managers and conservation practitioners

    Fecal Glucocorticoid Metabolites as Biomarkers in Equids: Assay Choice Matters

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-05-06, rev-recd 2021-03-29, accepted 2021-04-09, pub-electronic 2021-06-01Article version: VoRPublication status: PublishedFunder: Royal Society; Id: http://dx.doi.org/10.13039/501100000288; Grant(s): UF110641Funder: Chester Zoo; Id: http://dx.doi.org/10.13039/501100005359; Grant(s): Conservation FellowshipABSTRACT: Free ranging animals are exposed to environmental, demographic, and ecological challenges over time, which can affect their health and fitness. Non‐invasive biomarkers can provide insight into how animals cope with these challenges and assess the effectiveness of conservation management strategies. We evaluated how free ranging ponies (Equus ferus caballus) on the Carneddau Mountain range, North Wales respond to 2 stimuli: an acute stressor of an annual roundup event in November 2014, and spatial and temporal variation in ecological factors in 2018. We evaluated fecal glucocorticoid metabolites using 2 enzyme immunoassays (EIAs): an 11‐oxoetiocholanolone EIA (measuring 11,17‐dioxoandrostanes [11,17‐DOAs]) and a corticosterone EIA. The former assay has been validated in equids, whereas there is limited evidence for the suitability of the latter. We used an additional parent testosterone EIA to measure fecal androgen metabolites in response to the ecological challenges. Following the roundup, the metabolite concentrations measured by the 2 glucocorticoid EIAs were not correlated. The 11,17‐DOAs were elevated from the second day following the roundup and then slowly returned to pre‐round levels over the next 2 weeks. In contrast, the metabolites measured by the corticosterone assay showed no response to the roundup. For the ecological data, all 3 assays detected a positive correlation between metabolites and social group size in males but not in females. The metabolite concentrations measured by the testosterone and corticosterone assays were highly correlated and were temporally associated with the onset of the breeding season, whereas the 11,17‐DOAs were not. The co‐variance of metabolites measured by the corticosterone and testosterone assays, and the lack of an acute response in the corticosterone assay to the roundup, suggests that metabolites detected by the corticosterone assay were not primarily associated with increased glucocorticoid production. We recommend using well‐validated fecal biomarker assays of hypothalamus‐pituitary‐adrenal axis activity to evaluate and compare the effect of different management interventions and environmental change. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society

    Interaction of two imidazolium gemini surfactants with two model proteins BSA and HEWL

    Get PDF
    Gemini surfactants and their interactions with proteins have gained considerable scientific interest, especially when amyloidogenic proteins are taken into account. In this work, the influence of two selected dicationic (gemini) surfactants (3,3′-[1,8-(2,7-dioxaoctane)]bis(1-dodecylimidazolium) chloride and 3,3′-[1,12-(2,11-dioxadodecane)]bis(1-dodecylimidazolium) chloride) on two model proteins, bovine serum albumin (BSA) and hen egg white lysozyme (HEWL), have been investigated. A pronounced and sophisticated influence on BSA structure has been revealed, including a considerable change of protein radius of gyration as well as substantial alteration of its secondary structure. Radius of gyration has been found to rise significantly with addition of surfactants and to fall down for high surfactants concentration. Similarly, a remarkable fall of secondary structure (α-helix content) has been observed, followed by its partial retrieval for high surfactants concentration. A strong aggregation of BSA has been observed for a confined range of surfactants concentrations as well. In case of HEWL-gemini system, on the other hand, the protein-surfactant interaction was found to be weak. Molecular mechanisms explaining such behaviour of protein-surfactant systems have been proposed. The differences of properties of both studied surfactants have also been discussed
    corecore