16 research outputs found
Design and use of Chikungunya virus replication templates utilizing mammalian and mosquito RNA polymerase I mediated transcription
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. It has a positive sense RNA genome that also serves as the mRNA for four non-structural proteins (nsPs) representing subunits of the viral replicase. Coupling of nsP and RNA synthesis complicates analysis of viral RNA replication. We developed trans-replication systems, where production of replication competent RNA and expression of viral replicase are uncoupled. Mammalian and mosquito RNA polymerase I promoters were used to produce non-capped RNA templates, which are poorly translated relative to CHIKV replicase generated capped RNAs. It was found that, in human cells, constructs driven by RNA polymerase I promoters of human and Chinese hamster origin performed equally well. In contrast, RNA polymerase I promoters from Aedes mosquitoes exhibited strong species specificity. In both mammalian and mosquito cells, novel trans-replicase assays had exceptional sensitivity, with up to 105-fold higher reporter expression in the presence of replicase relative to background. Using this highly sensitive assay to analyse CHIKV nsP1 functionality, several mutations that severely reduced, but did not completely block, CHIKV replicase activity were identified: (i) tagging the N-terminus of nsP1 with eGFP; (ii) mutations D63A and Y248A blocking the RNA capping; (iii) mutation R252E affecting nsP1 membrane anchoring. In contrast, a mutation in the nsP1 palmitoylation site completely inactivated CHIKV replicase in both human and mosquito cells and was lethal for the virus. Our data confirms that this novel system provides a valuable tool to study CHIKV replicase, RNA replication and virus-host interactions
Development of the urogenital system is regulated via the 3 ' UTR of GDNF
Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cellline derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3' untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF's effects on progenitors. Moreover, Gdnf(hyper) mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3' UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies.Peer reviewe
Development of the urogenital system is regulated via the 3 ' UTR of GDNF
Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cellline derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3' untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF's effects on progenitors. Moreover, Gdnf(hyper) mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3' UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies
GDNF Overexpression from the Native Locus Reveals its Role in the Nigrostriatal Dopaminergic System Function
Peer reviewe
Sema4C-Plexin B2 signalling modulates ureteric branching in developing kidney
Semaphorins, originally identified as axon guidance molecules, have also been implicated in angiogenesis, function of the immune system and cancerous growth. Here we show that deletion of Plexin B2 (Plxnb2), a semaphorin receptor that is expressed both in the pretubular aggregates and the ureteric epithelium in the developing kidney, results in renal hypoplasia and occasional double ureters. The rate of cell proliferation in the ureteric epithelium and consequently the number of ureteric tips are reduced in the kidneys lacking Plexin B2 (Plxnb2â/â). Semaphorin 4C, a ligand for Plexin B2, stimulates branching of the ureteric epithelium in wild type and Plxnb2+/â kidney explants, but not in Plxnb2â/â explants. As shown by co-immunoprecipitation Plexin B2 interacts with the Ret receptor tyrosine kinase, the receptor of Glial-cell-line-derived neurotrophic factor (Gdnf), in embryonic kidneys. Isolated Plxnb2â/â ureteric buds fail to respond to Gdnf by branching, but this response is rescued by Fibroblast growth factor 7 and Follistatin as well as by the metanephric mesenchyme. The differentiation of the nephrogenic mesenchyme, its morphology and the rate of apoptosis in the Plxnb2â/â kidneys are normal. Plexin B2 is co-expressed with Plexin B1 (Plxnb1) in the kidney. The double homozygous Plxnb1âPlxnb2-deficient mice show high embryonic lethality prior to onset of nephrogenesis. The only double homozygous embryo surviving to E12 showed hypoplastic kidneys with ureteric branches and differentiating mesenchyme. Taken together, our results show that Sema4C-Plexin B2 signalling regulates ureteric branching, possibly through modulation of Gdnf signalling by interaction with Ret, and suggest non-redundant roles for Plexin B1 and Plexin B2 in kidney development.This work was financially supported by Sigrid Juselius Foundation, the Academy of Finland, University of Helsinki, Helsinki Graduate School in Biotechnology and Molecular Biology (GSBM), K. Albin Johansson Foundation, The Finnish Kidney Foundation, The Finnish Cultural Foundation and the Swedish Cultural Foundation in Finland.Peer reviewe
Sema4C-Plexin B2 signalling modulates ureteric branching in developing kidney
Semaphorins, originally identified as axon guidance molecules, have also been implicated in angiogenesis, function of the immune system and cancerous growth. Here we show that deletion of Plexin B2 (Plxnb2), a semaphorin receptor that is expressed both in the pretubular aggregates and the ureteric epithelium in the developing kidney, results in renal hypoplasia and occasional double ureters. The rate of cell proliferation in the ureteric epithelium and consequently the number of ureteric tips are reduced in the kidneys lacking Plexin B2 (Plxnb2 / ). Semaphorin 4C, a ligand for Plexin B2, stimulates branching of the ureteric epithelium in wild type and Plxnb2+/ kidney explants, but not in Plxnb2 / explants. As shown by co-immunoprecipitation Plexin B2 interacts with the Ret receptor tyrosine kinase, the receptor of Glial-cell-line-derived neurotrophic factor (Gdnf), in embryonic kidneys. Isolated Plxnb2 / ureteric buds fail to respond to Gdnf by branching, but this response is rescued by Fibroblast growth factor 7 and Follistatin as well as by the metanephric mesenchyme. The differentiation of the nephrogenic mesenchyme, its morphology and the rate of apoptosis in the Plxnb2 / kidneys are normal. Plexin B2 is co-expressed with Plexin B1 (Plxnb1) in the kidney. The double homozygous Plxnb1âPlxnb2-deficient mice show high embryonic lethality prior to onset of nephrogenesis. The only double homozygous embryo surviving to E12 showed hypoplastic kidneys with ureteric branches and differentiating mesenchyme. Taken together, our results show that Sema4C-Plexin B2 signalling regulates ureteric branching, possibly through modulation of Gdnf signalling by interaction with Ret, and suggest non-redundant roles for Plexin B1 and Plexin B2 in kidney development
Sema4C-Plexin B2 signalling modulates ureteric branching in developing kidney
Semaphorins, originally identified as axon guidance molecules, have also been implicated in angiogenesis, function of the immune system and cancerous growth. Here we show that deletion of Plexin B2 (Plxnb2), a semaphorin receptor that is expressed both in the pretubular aggregates and the ureteric epithelium in the developing kidney, results in renal hypoplasia and occasional double ureters. The rate of cell proliferation in the ureteric epithelium and consequently the number of ureteric tips are reduced in the kidneys lacking Plexin B2 (Plxnb2-/-). Semaphorin 4C, a ligand for Plexin B2, stimulates branching of the ureteric epithelium in wild type and Plxnb2+/- kidney explants, but not in Plxnb2-/- explants. As shown by co-immunoprecipitation Plexin B2 interacts with the Ret receptor tyrosine kinase, the receptor of Glial-cell-line-derived neurotrophic factor (Gdnf), in embryonic kidneys. Isolated Plxnb2-/- ureteric buds fail to respond to Gdnf by branching, but this response is rescued by Fibroblast growth factor 7 and Follistatin as well as by the metanephric mesenchyme. The differentiation of the nephrogenic mesenchyme, its morphology and the rate of apoptosis in the Plxnb2-/- kidneys are normal. Plexin B2 is co-expressed with Plexin B1 (Plxnb1) in the kidney. The double homozygous Plxnb1-Plxnb2-deficient mice show high embryonic lethality prior to onset of nephrogenesis. The only double homozygous embryo surviving to E12 showed hypoplastic kidneys with ureteric branches and differentiating mesenchyme. Taken together, our results show that Sema4C-Plexin B2 signalling regulates ureteric branching, possibly through modulation of Gdnf signalling by interaction with Ret, and suggest non-redundant roles for Plexin B1 and Plexin B2 in kidney development. \ua9 2010 International Society of Differentiation
Correction: GDNF Overexpression from the Native Locus Reveals its Role in the Nigrostriatal Dopaminergic System Function.
[This corrects the article DOI: 10.1371/journal.pgen.1005710.]