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 27 

ABSTRACT 28 

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. It has a positive sense RNA 29 

genome that also serves as the mRNA for four non-structural proteins (nsPs) representing 30 

subunits of the viral replicase. Coupling of nsP and RNA synthesis complicates analysis of 31 

viral RNA replication. We developed trans-replication systems, where production of 32 

replication competent RNA and expression of viral replicase are uncoupled. Mammalian and 33 

mosquito RNA polymerase I promoters were used to produce non-capped RNA templates, 34 

which are poorly translated relative to CHIKV replicase generated capped RNAs. It was 35 

found that, in human cells, constructs driven by RNA polymerase I promoters of human and 36 

Chinese hamster origin performed equally well. In contrast, RNA polymerase I promoters 37 

from Aedes mosquitoes exhibited strong species specificity. In both mammalian and mosquito 38 

cells, novel trans-replicase assays had exceptional sensitivity, with up to 10
5
-fold higher 39 

reporter expression in the presence of replicase relative to background. Using this highly 40 

sensitive assay to analyse CHIKV nsP1 functionality, several mutations that severely reduced, 41 

but did not completely block, CHIKV replicase activity were identified: (i) tagging the N-42 

terminus of nsP1 with eGFP; (ii) mutations D63A and Y248A blocking the RNA capping; 43 

(iii) mutation R252E affecting nsP1 membrane anchoring. In contrast, a mutation in the nsP1 44 

palmitoylation site completely inactivated CHIKV replicase in both human and mosquito 45 

cells and was lethal for the virus. Our data confirms that this novel system provides a valuable 46 

tool to study CHIKV replicase, RNA replication and virus-host interactions.  47 

  48 
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IMPORTANCE 49 

Chikungunya virus (CHIKV) is a medically important pathogen responsible for recent large-50 

scale epidemics. The development of efficient therapies against CHIKV has been hampered 51 

by gaps in our understanding of how non-structural proteins (nsPs) function to form the viral 52 

replicase and replicate virus RNA. Here we describe an extremely sensitive assay to analyse 53 

the effects of mutations on virus RNA synthesis machinery in both cells of mammalian (host) 54 

and mosquito (vector) origin. Using this system several lethal mutations in CHIKV nsP1 were 55 

shown to reduce but not completely block the ability of its replicase to synthesize viral RNAs. 56 

However, in contrast to related alphaviruses, CHIKV replicase was completely inactivated by 57 

mutations preventing palmitoylation of nsP1. These data can be used to develop novel, virus-58 

specific antiviral treatments.   59 
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INTRODUCTION 60 

Genome replication of RNA viruses is carried out by an RNA-dependent-RNA polymerase 61 

complex (replicase) that consists of one or more virus-encoded proteins and may also 62 

incorporate host-cell proteins. For positive-strand RNA viruses the virus-encoded 63 

component(s) of replicase are directly translated from the RNA genome. Its expression 64 

depends on RNA replication and vice versa; RNA replication depends on expression and 65 

functional activity of viral replicase. Thus, for these viruses RNA synthesis and replicase 66 

expression are functionally coupled.  67 

Alphaviruses (family Togaviridae) comprise a group of positive-strand RNA viruses that 68 

includes important human pathogens such as Chikungunya virus (CHIKV) as well as several 69 

well-studied model viruses including Semliki Forest virus (SFV) and Sindbis virus (SINV). 70 

Most alphaviruses are mosquito-vectored (1) and can efficiently replicate in cells of vertebrate 71 

and arthropod origin. Alphavirus infection in vertebrate cells is highly cytotoxic. In contrast, 72 

infection of arthropod cells is non-cytotoxic and results in a persistent low-level infection. 73 

Alphaviruses have RNA genomes that are approximately 12 kb in size with a 5’ cap and 3’ 74 

poly(A) tail. The genome consists of two open reading frames (ORFs). The 3’ ORF encodes 75 

for a structural polyprotein which is translated from a subgenomic (SG) RNA transcribed 76 

under the control of a SG promoter in infected cells (2). The virus-encoded replicase subunits, 77 

termed non-structural proteins (nsPs), are expressed in the form of a non-structural (ns) 78 

polyprotein precursor(s) (P123 and P1234) from the ORF located at the 5’ two-thirds of the 79 

virus genome (3). The ns-polyprotein is proteolytically processed by nsP2 which has protease 80 

activity (4) initially resulting in a short-lived negative-strand RNA polymerase (P123 + nsP4) 81 

that is subsequently converted into a stable positive-strand RNA polymerase 82 

(nsP1+nsP2+nsP3+nsP4) (5). All four nsPs as well as most of their processing intermediates 83 

(P1234, P123 and P23) are strictly required for alphavirus RNA replication (3). 84 
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Replicative functions of alphavirus replicase proteins are relatively well-studied. nsP1 is a 85 

virus-specific methyl- and guanylyltransferase and serves as membrane anchor for virus 86 

replicase (6, 7). nsP2 is a papain-like cysteine protease (8), NTPase (9), RNA triphosphatase 87 

(10) and RNA helicase (11). NsP3 of Old World alphaviruses binds cellular G3BP proteins 88 

that are required for RNA replication (12). It also contains an N-terminal macro-domain with 89 

the ability to bind ADP-ribose and remove it from mono ADP-ribosylated substrates. This is 90 

crucial for viral RNA replication (13). nsP4 is the catalytic subunit of viral RNA polymerase 91 

(14, 15) and also has terminal adenylyltransferase activity (16). In addition, all of these 92 

proteins have a number of essential functions that are not directly linked to viral RNA 93 

replication. Thus, nsP1 has been reported to antagonize an anti-viral protein, tetherin (17), 94 

nsP2 of Old World alphaviruses triggers degradation of host cell RNA polymerase II (18) and 95 

antagonizes type-I interferon signalling (19), nsP3 modulates the phosphatidylinositol-3-96 

kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway (20) and is responsible 97 

for translational shutoff in infected cells (21). nsP4 is involved in suppression of the unfolded 98 

protein response (22). While enzymatic functions of nsPs are well conserved for all 99 

alphaviruses their non-replicative functions exhibit a significant variation depending on virus 100 

and its host. For example nsP2 is cytotoxic only in the case of Old World alphaviruses (23) 101 

and only in vertebrate cells (18). The multiple functions of nsPs, their variation between 102 

different alphaviruses and the coupled nature of nsP expression and viral RNA replication 103 

complicates the analysis of functional significance of nsPs, their different mutations as well as 104 

investigating the role of host cell interaction partners in alphavirus RNA replication. 105 

De-coupling the viral replicase protein(s) expression from viral RNA synthesis represents a 106 

powerful approach to study viral RNA replication. This has been proven useful to study the 107 

replication of influenza virus (24, 25), flavivirus Kunjin virus (26) and nodavirus flock house 108 

virus (27). In addition, the ability of viral replicase to amplify RNA template provided in 109 
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trans has also allowed construction of yeast-based replication systems for bromo-, noda- and 110 

tombusviruses (28–30). In the case of alphaviruses, de-coupled replication systems are 111 

generally designed to amplify truncated RNA templates where the ns- and structural ORFs of 112 

alphavirus genome are replaced by sequences encoding for different reporter proteins; such 113 

systems are often referred to as trans-replication systems. Trans-replication systems have been 114 

developed for SINV, SFV and CHIKV and used to study alphavirus replication complex 115 

biogenesis (31–33), RNA template sequence requirements (34), analysis of the impact of 116 

template length on the size of replication complexes (35), tagging of different replicase 117 

proteins (36) and analysis of the impact of different mutations introduced into replicase 118 

proteins on viral RNA replication in mammalian (8, 37, 38) and mosquito cells (39). While 119 

these studies have universally found the alphavirus trans-replication systems to be efficient 120 

and robust tools they have also revealed certain technical limitations. Namely, to produce 121 

replication competent template RNA and mRNA for expression of replicase polyproteins, 122 

alphavirus trans-replication systems have traditionally used either bacteriophage T7 RNA 123 

polymerase and corresponding promoters (33) or cellular RNA polymerase II promoters such 124 

as the immediate early promoter of human cytomegalovirus (CMV) or Aedes aegypti 125 

polyubiquitin promoter (Ubi) (36, 39). The major drawback of the use of bacteriophage T7 126 

RNA polymerase promoters is that use of such trans-replication systems is restricted to cell 127 

lines expressing T7 RNA polymerase, which are generally not available for cell types relevant 128 

for in vivo alphavirus infections. The use of promoters for cellular RNA polymerase II allows 129 

the use of a wider range of cell types. However, such systems suffer from reduced sensitivity, 130 

especially with regards to replicase-mediated amplification of reporter activity used to replace 131 

the ns-ORF of virus genome and thus expressed from full-length RNA template. The effect is 132 

due to high background activity of reporter resulting from its efficient translation using RNA 133 

polymerase II generated capped transcripts. This activity is often comparable or even higher 134 
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than reporter activity produced from much more abundant viral replicase generated full-length 135 

positive-strand RNAs (36, 39).  136 

In this study several approaches were applied to overcome the above-mentioned limitations of 137 

alphavirus trans-replicase systems. It was found that inserting the sequence, corresponding to 138 

the 5’ end of the CHIKV genome, directly at the start site of human, Chinese hamster, Aedes 139 

aegypti or Aedes albopictus RNA polymerase I promoter allowed production of replication-140 

competent transcripts. These RNAs are, presumably due to the lack of 5’ cap-structure, poorly 141 

translated resulting in significantly reduced background levels of included reporters and 142 

enhanced sensitivity of the trans-replication assay. The template constructs with human or 143 

Chinese hamster RNA polymerase I promoters were active in various primate cell lines. 144 

Higher species specificity was observed for template constructs harboring either Aedes 145 

aegypti or Aedes albopictus RNA polymerase I promoter.  146 

The increased sensitivity of the system was used to re-evaluate 13 mutant versions of CHIKV 147 

replicase previously reported to be inactive or to have activities close to background level. A 148 

set of mutations in CHIKV nsP1, including both mutations in methyl- and guanylyltransferase 149 

active site and mutations affecting membrane anchoring of nsP1, were also analyzed using 150 

CHIKV trans-replicase and infectious clone systems. Highly consistent results confirmed 151 

some findings previously reported for SFV; however, it was also found that, unlike SFV, 152 

mutation of the palmitoylation site of nsP1 in CHIKV is lethal in the context of viral genome 153 

and completely abolishes its replicase activity. These findings confirm the improved trans-154 

replication system as an extremely sensitive and robust system to study alphavirus RNA 155 

replication. 156 

  157 

 on July 2, 2019 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


8 
 

RESULTS  158 

Trans-replicases of alphaviruses allow analysis of synthesis of full-length negative- and 159 

positive-strand copies of suitable template RNAs as well as SG RNAs transcribed from SG 160 

promoter(s) included into template RNA. However, directly analysing such RNAs using 161 

northern blotting and/or strand-specific RT-qPCR is time- and resource consuming and not 162 

convenient for large scale experiments such as screening libraries of antiviral compounds. 163 

Incorporation of one or more reporter coding sequences into template RNA constructs allows 164 

the use of the much more convenient measurement of reporter activities as proxy for synthesis 165 

of corresponding positive-strand RNAs, and is also applicable in high-throughput format. 166 

Therefore in the current study, as previously (8, 36, 39), firefly luciferase (Fluc) was used to 167 

substitute most of the ns-ORF and Gaussia luciferase (Gluc) to substitute the structural ORF 168 

in template constructs (Fig. 1B, 2B). For simplicity, hereafter the full-length RNA serving as 169 

template for Fluc translation is termed “genomic RNA” (and its synthesis as “replication”), 170 

RNA synthesized from the SG promoter that serves as template for Gluc translation is termed 171 

“SG RNA” (and its synthesis as “transcription”) and all RNAs synthesized by CHIKV trans-172 

replicase are referred to as “viral RNAs”.  173 

It has been observed that alphavirus trans-replication systems, where initial template RNA 174 

subsequently used by virus replicase is produced by cellular RNA polymerase II, can be 175 

efficiently used for analysis of transcription but not of RNA replication (36, 39). The intrinsic 176 

problem is that although large amounts of genomic RNAs are synthesized from such 177 

templates by viral replicase (36) the activity of Fluc reporter from such RNAs is masked by 178 

high background levels originating from the efficient translation of smaller amounts of initial 179 

capped template RNA transcripts. Therefore, the increase of Fluc activity is only observed for 180 

replicase mutants that boost viral RNA synthesis to levels considerably exceeding these 181 

achieved by wild type (wt) replicase (39). Even the amplification of signal for Gluc, that in 182 

 on July 2, 2019 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


9 
 

commonly used cell lines is typically more than 1000-fold for wt replicase (36), can be 183 

insufficient for the analysis of mutant replicases with severely reduced RNA synthesis 184 

activity. Therefore systems with higher sensitivity and with more prominent boost of Gluc 185 

and especially Fluc activities are required.  186 

Design of plasmids for production of non-capped template RNAs. It has been observed 187 

that use of inefficiently translated template RNA transcripts synthesized by RNA polymerase 188 

of bacteriophage T7 increased the sensitivity of a trans-replication system (36). Importantly, 189 

these data also indicate that replicases of alphaviruses are capable of binding to and initiating 190 

the replication of template RNAs lacking a 5’ cap structure. This property was used in four 191 

new templates designed for use in mammalian cells. In CMV-HH-Fluc-Gluc template the 192 

leader sequence corresponding to residues 1-137 of tobacco mosaic virus (TMV) including 193 

first 23 codons of its replicase followed by three terminator codons and a hammer head 194 

ribozyme (HH RZ) was inserted between the start site of CMV promoter and a nucleotide, 195 

corresponding to the 5’ end of CHIKV genome (Fig. 1B), so that the primary capped 196 

transcript has 193 non-viral nucleotides (Table 1) upstream of CHIKV-specific sequence. 197 

Upon ribozyme cleavage, non-capped RNAs with the authentic 5’ end of CHIKV genome and 198 

therefore suitable for use by CHIKV replicase are generated. Similarly, in HSPolI-HH-Fluc-199 

Gluc constructs, a full length promoter for human RNA polymerase I was used to drive the 200 

transcription of initial template RNA while HH RZ was used to generate the authentic 5’ end 201 

(Fig. 1B, Table 1). In addition, two constructs utilizing the design that has been successfully 202 

used to develop reverse genetics systems of negative-strand RNA viruses (40–44) were made. 203 

These constructs are HSPolI-Fluc-Gluc and CGPolI-Fluc-GLuc, using only non-transcribed 204 

parts of RNA polymerase I promoters from human and Chinese hamster, respectively (Fig. 205 

1B, Table 1). 206 
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RNA polymerase I promoters and terminators have been mapped for both principal vectors of 207 

CHIKV, Aedes aegypti (45) and Aedes albopictus (46, 47). Interestingly, in these promoters 208 

the region with highest sequence similarity is located immediately downstream of the 209 

transcription start site of rRNA (45). Three Aedes-specific template RNA expressing 210 

constructs were designed. First, in AegPolI-HH-Fluc-Gluc constructs, the full length upstream 211 

promoter of Aedes aegypti RNA polymerase I and HH RZ were used (Table 1); the construct 212 

also contained the Aedes aegypti RNA polymerase I terminator (Fig. 2B). Next, in the 213 

template construct designated AegPolI-Fluc-Gluc only non-transcribed part of the promoter 214 

was used (Table 1). Finally, in the template construct designated AlbPolI-Fluc-Gluc, the 215 

Aedes aegypti RNA polymerase I promoter and terminator were replaced with their 216 

counterparts from Aedes albopictus (Table 1). Hepatitis delta virus negative strand ribozyme 217 

(HDV RZ) sequence was added to ensure cleavage of all RNA templates immediately 218 

downstream of poly(A) sequence (Fig. 1B, 2B). 219 

Template RNA encoding plasmids utilizing human and Chinese hamster RNA 220 

polymerase I promoters are efficient in primate cells. A panel of constructs consisting of 221 

CMV-Fluc-Gluc and four new templates (CMV-HH-Fluc-Gluc, HSPolI-Fluc-Gluc, HSPolI-222 

HH-Fluc-Gluc and CGPolI-Fluc-Gluc) was analyzed in two primate (U2OS (human), Vero 223 

E6 (African green monkey)) and two rodent (BHK-21 (Syrian golden hamster) and CHO 224 

(Chinese hamster)) cell lines. The Fluc and Gluc activities detected in CHO cells were always 225 

close to the background level suggesting that CHIKV replicase works inefficiently, if at all, in 226 

CHO cells; for this reason these cells were excluded from further analysis. Results obtained 227 

for CMV-Fluc-Gluc template were consistent with these previously observed (36); the 228 

expression of Fluc marker occurred at a high level also in cells co-transfected with CMV-229 

Fluc-Gluc + CMV-P1234
GAA

 – a negative control containing a polymerase-inactivating 230 

mutation in nsP4. The increase of Fluc activity in the presence of active (versus inactive) 231 
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replicase was very low (~2 fold) (Fig. 3A). In contrast, strong boost of Gluc activity was 232 

observed in all cell lines, being highest in U2OS and BHK-21 (~20,000-fold) and slightly 233 

lower in Vero E6 cells (~5,000-fold) (Fig. 3A).  234 

Adding a leader and HH RZ to the template reduced Fluc background in control cells less 235 

than 10-fold. The high Fluc activity in the presence of inactive replicase indicates that 236 

additional TMV sequences and HH RZ cleavage were not sufficient to block Fluc translation. 237 

It is likely that CHIKV replicase cannot efficiently use templates with 193 additional residues 238 

upstream of the native 5’ end of the viral genome (Table 1). If so, boosting of expression of 239 

both reporters by active replicase (Fig. 3A) indicates that ribozyme-mediated cleavage did 240 

occur at some level. The low cleavage efficiency/speed apparently led to only low amounts of 241 

templates with correct 5’ ends in cells transfected with CMV-HH-Fluc-Gluc which in turn 242 

resulted in reduced Fluc and especially Gluc activity in the presence of CHIKV-P1234. 243 

Consequently, boost of Fluc expression remained low (Fig. 3A). Compared to those achieved 244 

for CMV-Fluc-Gluc, boosts of Gluc activities for CMV-HH-Fluc-Gluc were significantly 245 

lower in all three cell lines, typically less than 1,000-fold (Fig. 3A). Taken together, it was 246 

concluded that while used approach was not efficient enough to prevent Fluc translation from 247 

RNA polymerase II generated transcripts HH RZ was capable to generate at least some 248 

amount of initial transcripts with proper 5’ ends that were subsequently utilized by CHIKV 249 

replicase.  250 

Use of RNA polymerse I promoters greatly improved system performance. Although the 251 

absolute levels of Fluc and Gluc activities observed in cells transfected with HSPolI-Fluc-252 

Gluc + CMV-P1234 or CMV-Fluc-Gluc + CMV-P1234 were similar in U2OS cells, the much 253 

lower background activity of both reporters expressed by HSPolI-Fluc-Gluc made the assay 254 

using the latter template generally much more sensitive. First and most importantly, the boost 255 

of Fluc activity was significantly increased in all cell lines used, being highest (>2,000-fold) 256 
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in U2OS cells (Fig. 3A). Second, the boost of Gluc activity also significantly increased in 257 

U2OS cells where it exceeded 100,000-fold; the effect was less pronounced but still 258 

significant in Vero E6 cells. In contrast, in BHK-21 cells CMV-Fluc-Gluc reached higher 259 

boost levels of Gluc expression compared to HSPolI-Fluc-Gluc (Fig. 3A). As CHIKV 260 

replicates well in both Vero E6 and BHK-21 cells the observed trend most likely reflects a 261 

reduced activity of human RNA polymerase I promoter in monkey and especially in rodent 262 

cells relative to the human-derived U2OS cells. The effect of incorporating HH RZ was 263 

consistent with the observation above - expression of reporters in cells transfected with 264 

HSPolI-HH-Fluc-Gluc template was reduced which resulted in significantly diminished boost 265 

efficiencies of both markers in primate cells (Fig. 3A). Only in BHK-21 cells, boost of Gluc 266 

activity achieved through the use of HSPolI-HH-Fluc-Gluc was similar to that achieved using 267 

HSPolI-Fluc-Gluc and the boost of Fluc activity was even more prominent (Fig. 3A). Most 268 

likely, the presence of the downstream region of human RNA polymerase I promoter allowed 269 

it to be used more efficiently in rodent cells. 270 

Finally, construct CGPolI-Fluc-Gluc was tested in all three cell lines. Surprisingly, the 271 

construct performed poorly (~8-fold boost of Fluc and ~380-fold boost of Gluc activities) in 272 

BHK-21 cells. In contrast, it was highly active in U2OS and Vero E6 cells showing boosts 273 

comparable to these observed for HSPolI-Fluc-Gluc construct suggesting this rodent RNA 274 

polymerase I promoter is highly active in primate cells (Fig. 3A). Taken together, these 275 

experiments revealed U2OS cells and HSPolI-Fluc-Gluc construct as the most sensitive 276 

combination; therefore it was selected for subsequent experiments.  277 

Measurement of Fluc and Gluc activities is a convenient, but indirect, method for analysis of 278 

CHIKV replicase activity. To demonstrate that Fluc and Gluc activities indeed reflect 279 

synthesis of viral positive-strand RNAs, northern blot analysis was performed using 280 

transfected U2OS and BHK-21 cells. Negative strand synthesis, which is not detectable 281 
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through the measurement of reporter activities (34), was also assessed. Efficient synthesis of 282 

genomic and SG RNAs was observed in U2OS cells co-transfected with CMV-Fluc-Gluc, 283 

HSPolI-Fluc-Gluc or CGPolI-Fluc-Gluc and CMV-P1234. The presence of HH RZ reduced 284 

positive-strand RNA synthesis for both CMV and HSPolI promoter-based vectors; again, 285 

most likely this indicates that the HH RZ is not efficient enough in generating RNAs with 286 

proper 5’ ends. The synthesis of negative-strand RNA was found to follow the same pattern 287 

(Fig. 3B, left panels). In BHK-21 cells, strong replication/transcription was observed only for 288 

CMV-Fluc-Gluc derived template RNAs. The replication of template RNA generated from 289 

CMV-HH-Fluc-Gluc was diminished and no replication products could be detected in cells 290 

transfected with CMV-P1234 and HSPolI-Fluc-Gluc, HSPolI-HH-Fluc-Gluc or CGPolI-Fluc-291 

Gluc (Fig. 3B, right panels). Taken together these results demonstrated an excellent 292 

correlation between levels of replicase generated RNAs and expression of reporters translated 293 

from viral positive-strand RNAs. 294 

 295 

Template RNA encoding plasmids utilizing RNA polymerase I promoters from Aedes 296 

mosquitoes display species specificity. A panel consisting of Ubi-Fluc-Gluc and three new 297 

constructs (AegPolI-HH-Fluc-Gluc, AegPolI-Fluc-Gluc and AlbPolI-Fluc-Gluc) was 298 

analyzed in Aedes albopictus derived C6/36 cells and Aedes aegypti derived AF319 cells. As 299 

previously observed (39), background activity of Fluc reporter in cells transfected with Ubi-300 

Fluc-Gluc limited the boost of its expression by active CHIKV replicase; only ~3-fold or ~6-301 

fold increase of Fluc activity was observed in C6/36 and AF319 cells, respectively (Fig. 4A). 302 

In contrast, boost of Gluc activity was ~800-fold in C6/36 and ~9,000-fold in AF319 cells 303 

(Fig. 4A).  304 

Both AegPolI-HH-Fluc-Gluc and AegPolI-Fluc-Gluc constructs were highly active in AF319 305 

cells. Again, the use of RNA polymerase I promoter reduced background levels of both 306 
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reporters and, subsequently, increased the boost of both markers: highly increased (~100-fold) 307 

boost of Fluc activity and more slightly, but still significantly, increased (~20,000-fold) boost 308 

of Gluc activity were observed (Fig. 4A). In contrast to human cells where the construct 309 

lacking hammer head ribozyme significantly outperformed the HH RZ version (Fig. 3A) no 310 

significant difference between AegPolI-HH-Fluc-Gluc and AegPolI-Fluc-Gluc was observed 311 

in AF319 cells (Fig. 4A). This may indicate that in Aedes aegypti cells the presence of the 312 

downstream region of RNA polymerase I promoter has bigger impact on the activity of the 313 

RNA polymerase I promoter and thus compensates for the inefficient generation of initial 314 

transcripts with authentic 5’ ends by HH RZ cleavage. Alternatively, or in addition, it may 315 

indicate more efficient cleavage of primary transcripts by HH RZ, as lower temperature (28 316 

o
C instead of 37 

o
C) may facilitate the formation of the ribozyme structure.  317 

AlbPolI-Fluc-Gluc was also highly active and revealed little cell specificity: Fluc and Gluc 318 

boosts in homologous mosquito cells were only slightly higher (Fig. 4A) and the difference 319 

between mosquito cell lines was not statistically significant (p=0.276 for Fluc and p=0.090 for 320 

Gluc). In contrast, AegPolI-Fluc-Gluc was almost completely inactive in C6/36 cells. 321 

Surprisingly, the activity of AegPolI-HH-Fluc-Gluc in C6/36 cells was rather similar to that 322 

of Ubi-Fluc-Gluc (Fig. 4A). These data indicate that the upstream part of RNA polymerase I 323 

promoter of Aedes aegypti is not sufficient to drive transcription in Aedes albopictus cells. 324 

However, the presence of highly conserved sequences located downstream of the transcription 325 

start site (45) compensates for this defect. Taken together, it was found that the most efficient 326 

template/mosquito cell combination was AegPolI-Fluc-Gluc and AF319 cells; for C6/36 cells 327 

the best performance was observed for AlbPolI-Fluc-Gluc template (Fig. 4A). These 328 

combinations were therefore selected for subsequent experiments. 329 

To confirm that the observed differences in Fluc and Gluc reporter activities indeed reflect 330 

differences in the amount of viral RNAs northern blot analysis was performed. Again, an 331 
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excellent correlation between the amount of replicase generated RNAs and expression levels 332 

of reporter proteins was observed. Thus, in C6/36 cells the highest level of replicase generated 333 

RNAs was observed for Ubi-Fluc-Gluc followed by AlbPolI-Fluc-Gluc derived templates. 334 

Replicase generated RNAs were also clearly detected in C6/36 cells transfected with AegPolI-335 

HH-Fluc-Gluc but not with AegPolI-Fluc-Gluc (Fig. 4B, left panel). In AF319 cells, the 336 

highest RNA levels were observed when AegPolI-Fluc-Gluc or AegPolI-HH-Fluc-Gluc were 337 

used with minimal differences between these two. High levels of replicase generated RNAs 338 

were also detected in cells transfected with Ubi-Fluc-Gluc; in cells transfected with AlbPolI-339 

Fluc-Gluc their levels were much lower (Fig. 4B, right panel). It was also observed that 340 

similar to the reporter activities, the levels of replicase made positive-strand transcripts in 341 

mosquito cells were lower than in mammalian cells; in order to obtain comparable images 5-342 

fold excess of mosquito cell derived RNAs and longer exposure of northern blot was required. 343 

Consistently, we were easily able to detect negative-strand RNAs in mammalian cells (Fig 344 

3B) while in mosquito cells their levels were below the limit of detection of the assay.  345 

 346 

CHIKV infection triggers replication of plasmid-encoded template RNAs. Template RNA 347 

encoding constructs also have the potential to serve as sensors of virus infection in vitro and 348 

in vivo (48). For efficient detection, an advanced sensor must possess high sensitivity (high 349 

on/off ratio) and, in induced (infected) state, expression of reporter(s) at a level suitable for 350 

detection. In CHIKV trans-replicase system both of these requirements are clearly met: 351 

expression of Fluc and Gluc markers occur at high level and the on/off ratios are extremely 352 

high, especially for Gluc (>100,000-fold; Fig. 3A). However, a trans-replication system is 353 

different from natural virus infection. Therefore response of selected reporters to virus was 354 

also analysed. For these experiments, U2OS cells and CMV-Fluc-Gluc or HSPolI-Fluc-Gluc 355 
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templates as well as C6/36 cells and Ubi-Fluc-Gluc or AlbPolI-Fluc-Gluc templates were 356 

used.  357 

Infection of U2OS cells transfected with CMV-Fluc-Gluc resulted in significant, (~10-fold) 358 

decrease of Fluc activity (Fig. 5A, left panel). Most likely this effect was caused by inhibition 359 

of expression of Fluc from capped transcripts produced in the nucleus, either due to shutdown 360 

of their synthesis by RNA polymerase II and/or because of virus-induced translational 361 

shutdown. In contrast, expression of the Gluc marker increased ~350-fold indicating efficient 362 

synthesis of Gluc-expressing SG RNAs by incoming virus replicase (Fig. 5A, left panel). In 363 

U2OS cells transfected with HSPolI-Fluc-Gluc CHIKV infection significantly increased 364 

expression of both markers. Expression of Fluc was boosted ~50-fold. The effect, opposite to 365 

that observed in cells transfected with CMV-Fluc-Gluc, presumable derives from the much 366 

lower background level of Fluc activity in non-infected cells. It is also possible that the RNA 367 

polymerase I is less susceptible to CHIKV infection induced degradation, which might then 368 

contribute to the observed effect.  Boost of Gluc marker was, as expected, even more 369 

prominent (~30,000-fold increase). 370 

Infection of C6/36 cells transfected with Ubi-Fluc-Gluc or AlbPolI-Fluc-Gluc resulted in 371 

minor increase of Fluc activity. Although the effect was statistically significant the increase of 372 

Fluc activity upon infection never exceeded 2-fold. As in mammalian cells the boost of Gluc 373 

activity was more prominent, ~55-fold for both vector types and highly significant (Fig. 5B). 374 

The absolute values of Gluc activity in cells transfected with Ubi-Fluc-Gluc were ~15-fold 375 

higher than these in cells transfected with AlbPolI-Fluc-Gluc (Fig. 5B). This correlates with 376 

the observation that the SG RNA levels in the trans-replication system were also higher when 377 

Ubi-Fluc-Gluc was used as the source of template RNA for CHIKV replicase (Fig 4B, left 378 

panel). It may indicate that in C6/36 cells the polyubiquitin promoter is stronger than the 379 

truncated Aedes albopictus RNA polymerase I promoter. 380 
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 381 

Trans-replication systems utilizing RNA polymerase I can be used to distinguish lethal 382 

mutations from ones having strong negative impact on CHIKV RNA synthesis.  383 

Many of the mutations introduced into the alphavirus ns-proteins tend to reduce the infectivity 384 

of the mutant viruses by 1000- to 10,000-fold (38, 49). For that reason, the sensitivity of the 385 

systems relying on the use of CMV-Fluc-Gluc template in U2OS cells or T7-Fluc-Gluc 386 

template in BSR cells may not be sufficient to distinguish between truly lethal (completely 387 

blocking RNA replication) and strongly attenuating mutations which often allow virus to be 388 

rescued and undergo reversion/pseudoreversion or compensation during subsequent 389 

replication. Based on this consideration we re-evaluated the phenotypes of twelve CHIKV 390 

replicase mutants previously reported to be inactive or possess strongly reduced replicase 391 

activity.  392 

Analysis of mutants harboring eGFP at the C-terminal region of nsP1 confirmed previous 393 

findings. Insertion of eGFP after amino acid residue 516 of nsP1 (P1
E
234-C) was 394 

considerably better tolerated than similar insertions after residues 492, 497 or 525 (P1
E
234-A, 395 

P1
E
234-B and P1

E
234-D, respectively) (Fig. 6A, B). It was also observed that from these 396 

three mutants P1
E
234-D displayed the highest transcription activity in U2OS cells (Fig. 6B). 397 

In contrast, in BSR cells it had the lowest transcription activity (36). Most likely this reflects a 398 

host-cell specific effect of the mutation. Indeed, we have previously observed that in rodent 399 

cells, CHIKV replicase mutations tend to have a more prominent effect on the trans-replicase 400 

activity than in human cells (39). The ability of mutant replicase with eGFP attached to the C-401 

terminus of nsP4 (P1234
E
) to perform low level (activity ~1% from that of wt replicase) 402 

replication and transcription was also confirmed (Fig 6A, B); this is consistent with the 403 

previous observation that virus harboring a similar insertion is viable but rapidly loses the 404 

inserted marker (36). A newly constructed replicase harboring eGFP at N-terminus of nsP1 405 
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displayed Fluc activity of only ~2-fold over background (activity at the presence of CMV-406 

P1234
GAA

), however this difference was statistically significant (p<0.01). The transcription 407 

was better detectable (the boost of Gluc activity ~900-fold over background) and highly 408 

significant (p<0.0001). Thus, addition of eGFP to the N-terminus of nsP1 strongly inhibits, 409 

but does not completely block, the activity of CHIKV replicase. A virus harboring 410 

corresponding insertion might therefore be viable but likely also highly unstable. 411 

Mutation in the active site of capping enzyme (P1
DA

234) allowed both Fluc (Fig. 6A) and 412 

Gluc (Fig. 6B) markers expression to occur at levels significantly above background 413 

(p<0.0001 and p<0.001, respectively) clearly indicating synthesis of CHIKV positive-strand 414 

RNAs. As for this mutant the replicase-made RNAs are presumably non-capped and therefore 415 

poorly translated their relative amounts were probably even higher than could be deduced 416 

from the increase of reporter expression. This finding clearly supports the hypothesis that 417 

synthesis of alphavirus positive-strand RNAs can occur in the absentse of nsP1 capping 418 

activity (37, 39). The effects observed for the mutation in the membrane binding peptide of 419 

nsP1 (P1
WA

234) and for mutations known to reduce cytotoxicity (P12
EK

34, P12
EKPG

34) (Fig 420 

6A, B) were consistent with previous findings (36, 39). 421 

A mutation in the active site of nsP2 helicase/NTPase/triphosphatase (P12
KN

34) was clearly 422 

lethal for CHIKV as no activity above background was displayed (Fig 6A, B). Interestingly, a 423 

similar mutation in the context of SFV has been reported to allow reversions to occur (50). If 424 

so, the effect of this mutation is different among different alphaviruses. As the properties of 425 

P1
DA

234 suggest that RNA capping is not an absolute requirement for RNA synthesis it can 426 

be concluded that it was lack of RNA helicase and/or NTPase activity of nsP2 that blocked 427 

synthesis of CHIKV positive-strand RNAs. No Fluc expression above background was 428 

observed for P12
CA

34, P12
WA

34 and P12
CA+SA

34 that have mutations in active site of nsP2 429 

protease. This is in agreement with our previous findings that CHIKV harboring such 430 
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mutations is not viable (8). All three mutants displayed very weak (~3-fold over background) 431 

but still significant (p-values <0.01; <0.0001 and <0.01 respectively) transcription activities. 432 

It is possible that this small activity may reflect some minor ability of unprocessed P1234 to 433 

perform viral RNA synthesis and/or that the bond between nsP3 and nsP4 in P1234 undergoes 434 

very inefficient spontaneous hydrolysis or cleavage by cellular enzymes. Taken together, the 435 

trans-replication system used here allowed clear separation of lethal replicase mutations from 436 

these that allow virus to be rescued. This conclusion is supported by data obtained using the 437 

RNA polymerase I based trans-replication system for analysis of effects of mutations in the 438 

helicase domain of CHIKV nsP2 (51). Similarly, in difficult to transfect murine neuronal cells 439 

the differences between lethal and viable mutants of nsP3 macro domain were clearly 440 

observed (13). 441 

  442 

Mutations in membrane binding regions of nsP1 have strong negative effect on CHIKV 443 

RNA replication and infectivity. In order to perform detailed analysis of CHIKV nsP1 444 

functions, the D63A mutation was introduced into Ubi-P1234 and into CMV-ICRES1, an 445 

infectious cDNA (icDNA) clone of CHIKV. In addition, three additional mutations were 446 

introduced into CMV-ICRES1, CMV-P1234 and Ubi-P1234. First, Tyr248 was substituted to 447 

Ala (Y248A). This residue is located in the membrane binding peptide region of nsP1 of 448 

alphaviruses and is important for membrane binding of nsP1 (52, 53) and/or for its activity as 449 

a capping enzyme (37, 54). Second, Arg252, located inside the membrane binding peptide, 450 

was substituted to Glu (R252E). Third, Cys residues 417-419, representing the palmitoylation 451 

site of CHIKV nsP1, were substituted with Ala residues (3C3A). All these mutations have 452 

been previously studied in the context of SFV trans-replicase and, with exception of D64A (in 453 

SFV numeration is based on the amino acid residue numbers in its nsP1), also in the context 454 

of SFV icDNA. Briefly, in the SFV trans-replicase system none of the mutants allowed 455 
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positive-strand RNA synthesis above background level; however, mutations D64A and 456 

Y249A did allow negative-strand RNA synthesis and spherule formation (37). In the context 457 

of SFV genome 3C3A mutation allowed virus rescue (55) and generation of second-site 458 

adaptive mutations (56) while all three mutations in membrane binding peptide were lethal 459 

(57). As we have already revealed, the phenotypes of SFV
W259A

 and CHIKV
W258A

 are clearly 460 

different (39). It was also very recently reported that mutation of C417-C419 to A417-A419 461 

in the context of CHIKV 181/25 genome results in drastic reduction of the virus RNA levels 462 

in cells transfected with transcripts from a corresponding mutant icDNA (58). However, 463 

authors of this study did not report the presence or absence of infectious virus progeny. 464 

Therefore it was of interest to compare the effects of nsP1 mutations on the rescue and RNA 465 

replication of SFV and CHIKV. 466 

The infectious centre assay (ICA) revealed that only the CMV-ICRES1
DA

 was able to form 467 

plaques; however, its infectivity was ~100,000-fold lower than that of wt CHIKV. The lack of 468 

infectivity for CMV-ICRES1
YA

, CMV-ICRES1
RE

 and CMV-ICRES1
3C3A

 was confirmed by 469 

western blotting that could not reveal the presence of capsid protein in cells transfected with 470 

any of these three plasmids. In contrast, synthesis of capsid protein was observed for 471 

CHIKV
D63A

, consistent with the data on infectious virus rescue (Fig. 7A). Sequencing of the 472 

mutated region in the genome of rescued CHIKV
DA

 revealed, however, that the introduced 473 

mutation had reverted. Nevertheless, this data clearly confirms that the lack of capping 474 

activity did not completely prevent positive-strand RNA synthesis which, in turn, allowed 475 

reversion to take place. As no infectious progeny was found for CMV-ICRES1
3C3A 

it was also 476 

concluded that, in contrast to SFV, the mutation of the nsP1 palmitoylation site is lethal for 477 

CHIKV. 478 

Next, the effects of these mutants were analysed in U2OS cells using HSPolI-Fluc-Gluc 479 

template and CMV-P1234 replicase plasmids. With the exception of nsP1
RE

 all nsP1 proteins 480 
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were found to be expressed at similar levels (Fig. 7B). As R253E mutation has similar effect 481 

on SFV nsP1 (37) it can be hypothesized that nsP1
RE

 fails to bind to membranes and this 482 

results in destabilization of the protein. The CMV-P1
WA

234 was able to boost both Gluc and 483 

Fluc expression (~60,000-fold and ~150-fold respectively). In both cases, the difference in 484 

levels achieved using wt CMV-P1234 was ~5-fold (Fig. 7B). At 39
o
C, however, only ~800-485 

fold boost of Gluc and ~4-fold boost of Fluc expression was observed for CMV-P1
WA

234; a 486 

difference from wt CMV-P1234 >300-fold and highly significant (p<0.0001) for both 487 

replication and transcription markers. Thus, the temperature sensitive phenotype resulting 488 

from W258A mutation, formerly revealed only for transcription (39), is clearly applicable for 489 

replication as well. Consistent with data from ICA and capsid protein expression, no replicase 490 

activity above background level was observed for CMV-P1
3C3A

234 and CMV-P1
RE

234 (Fig. 491 

7B). When the assay was performed at 28
o
C the CMV-P1

3C3A
234 remained completely 492 

inactive. In contrast, at reduced temperature Fluc and Gluc activities were boosted by CMV-493 

P1
RE

234 ~3.3-fold and ~350-fold, respectively, and were both significantly above background 494 

level (p<0.01 for Fluc and p<0.05 for Gluc). Thus, in the context of CHIKV replicase, the 495 

R252E mutation results in a strong temperature sensitive phenotype. The substitution 496 

introduced to CMV-ICRES
RE

 (CGC codon to GAG) requires two nucleotide substitutions for 497 

pseudoreversion (GAG to CGG or AGG Arg codons). Based on our experience such 498 

mutations do not revert when introduced to alphavirus icDNAs; therefore rescue of CMV-499 

ICRES1
RE

 at a permissive temperature (28 
o
C) was not attempted. CMV-P1

DA
234 was, again, 500 

able to boost expression of both Fluc and Gluc (Fig. 7A) indicating the presence of sufficient 501 

replicase activity for virus rescue to occur. These activities were, apparently, reduced too 502 

strongly (compared to wt CMV-P1234 ~130-fold for replication and ~230-fold for 503 

transcription) to allow preservation of introduced mutation that could be reverted by change 504 

of a single nucleotide residue (GCT for Ala to GAT for Asp). CMV-P1
Y248A

234 displayed 505 
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even stronger attenuation yet both Fluc and Gluc activities were clearly and significantly 506 

(p<0.05) above background levels (Fig. 7B). The failure to rescue CMV-ICRES1
YA

 (Fig. 7A) 507 

is most likely due to the nature of the introduced substitution (TAC codon to GCC) as two 508 

nucleotide substitutions are required for reversion. Taken together, in U2OS cells only 509 

palmitoylation site mutation resulted in replicase that was completely inactive in all 510 

conditions used. D63A, Y248A and R252E substitutions all displayed some, albeit strongly 511 

reduced, replicase activity at least at some of the tested conditions.  512 

Finally, the same set of mutations was analysed in Aedes aegypti-derived AF319 cells using 513 

AegPolI-Fluc-Gluc template and Ubi-P1234 replicase plasmids. As in mammalian cells, all 514 

nsP1 proteins except nsP1
RE

 were found to be expressed at similar levels (Fig 7C). Again, 515 

only the W258A mutant generated a replication signal similar to that of wt. This data does 516 

not, however, exclude synthesis of positive-strand genomic RNAs by the D63A mutant (and 517 

possibly Y248A mutant) as for this mutant the non-capped replicase-made RNAs would not 518 

have a translation advantage over the initial RNA polymerase I made transcripts. Indeed, the 519 

analysis of transcription signal, which offers higher sensitivity, revealed Gluc activities, 520 

significantly above background for D63A (p<0.05) and Y248A (p<0.05) mutants indicating 521 

synthesis and translation of SG RNAs (Fig. 7C). The Ubi-P1
RE

234 also displayed ability to 522 

increase Gluc levels; however, at this case boost was minor (~3.3-fold) and not statistically 523 

significant (p=0.167). Finally, no replication or transcription was detected for replicase 524 

encoded by Ubi-P1
3C3A

234. The correlation of data from mammalian and mosquito cells 525 

indicates that defects caused by nsP1 mutations were not host cell specific. Our data also 526 

confirmed that the phenotypes caused by the D63A and Y248A mutations in CHIKV and 527 

their counterparts in SFV are similar. This might also be the case for R252E mutation, but the 528 

tools used to study it in the context of SFV had inadequate sensitivity. In contrast, the 529 

phenotype caused by 3C3A mutation in the context of SFV and CHIKV was clearly different: 530 
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in the former it must allow replicase activity necessary for virus rescue while in the latter no 531 

evidence of RNA replication could be revealed by any of the highly sensitive assays.  532 
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DISCUSSION. 533 

Use of promoters and terminators of cellular RNA polymerase I resulted in a replicase system 534 

of unprecedented sensitivity. The increased sensitivity was mostly due to the fact that 535 

background level of reporter expression was considerably reduced with little (mosquito cells) 536 

or no (mammalian cells) loss of marker expression at the presence of viral replicase. 537 

Similarly, it may also be advantageous that transcripts made by RNA polymerase I do not 538 

undergo splicing. This may be important for sequences derived from the genomes of positive-539 

strand RNA viruses that often contain cryptic splicing signals. Use of an RNA polymerase I 540 

based system may also improve stability of RNA transcripts. RNAs made from alphavirus 541 

template constructs (Fig. 1B, 2B) have a bicistronic structure. If made by RNA polymerase II 542 

these RNAs behave as mRNAs with abnormally long 3’ UTR that contains non-translated 543 

Gluc ORF and may therefore be recognized by cellular mRNA degradation machinery. 544 

Finally, compared to promoters of RNA polymerase II the RNA polymerase I promoter, that 545 

is normally used for synthesis of ribosomal RNAs, is less likely to have strongly differential 546 

expression or silencing in different tissues. 547 

A caveat for the construction of efficient RNA polymerase I mediated template-RNA 548 

expression constructs is species-specificity, which was observed for both mammalian (Fig. 3) 549 

and Aedes mosquito (Fig. 4) derived promoters. Interestingly, no clear correlation between 550 

promoter origin and the efficiency of the corresponding system in cells from different 551 

organisms was observed. Thus, a human RNA polymerase I promoter had no obvious 552 

advantage over that of Chinese hamster in primate cells (Fig. 3) and was also found to work in 553 

murine cells (13). In contrast, none of these promoters worked efficiently in BHK-21 cells. 554 

The reasons for this remained unknown though it can be speculated that the RNA polymerase 555 

I of Syrian golden hamster cannot recognize the promoter fragments used. This species 556 

specificity represents a significant problem for design of template-RNA expressing constructs 557 
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for non-model species where the RNA polymerase I promoters/terminators are not well 558 

characterized. Given the low conservation of the sequences of these elements an analysis of 559 

RNA polymerase I based transcription of these organisms may be required before efficient 560 

template-RNA producing constructs can be designed. An obvious way to alleviate at least 561 

some of these problems would be the use of ribozymes to trim the 5’ and 3’ ends of RNA 562 

transcripts. In this regard it should be noticed that while we experienced no difficulties with 563 

trimming of the 3’ ends of transcripts with an HDV RZ, the use of HH RZ to generate 564 

authentic 5’ ends essentially failed in mammalian cells. However, it worked reasonably well 565 

in the case of mosquito cells alleviating problems related to the observed species specificity 566 

(Fig. 4). Therefore, it can be considered as a potential approach for species where the 567 

information about RNA polymerase I promoter sequence and function is limited or absent. 568 

Consistent with our previous findings (36) relatively little transcript was generated from 569 

CMV-Fluc-Gluc by RNA polymerase II and these RNAs were poorly detectable by northern 570 

blot analysis (Fig.3B). This was also the case for Ubi-Fluc-Gluc transcripts in mosquito cells 571 

(Fig. 4B). In contrast, genomic RNAs synthesized by wt CHIKV replicase were abundant 572 

(Fig. 3B, 4B). However, the increase of RNA copy number resulted in disproportionate boost 573 

of Fluc expression (Fig. 3A, 4A). Most likely this lack of correlation between RNA and Fluc 574 

reporter levels is a consequence of a basic property of alphavirus infection: ns-proteins are 575 

synthesized only at the early stages of infection while the synthesis of their mRNAs (virus 576 

genomes) remains active until cell death (59). Hence, only a small amount of RNA genomes 577 

are used as mRNAs and in the late infection the ratio of ns-proteins to RNA genomes drops 578 

dramatically. Our trans-replication system appears to capture this important property of 579 

alphavirus infection, but this effect limits the use of genomic (Fluc) reporter activity for the 580 

analysis of genomic RNA synthesis. For the RNA polymerase II based system the nucleus-581 

made capped RNA transcripts are the first and most efficiently translated mRNAs for Fluc. 582 
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The increase in replicase-generated genomic RNAs, observed by northern blotting, occurs at a 583 

later stage when they are poorly translated, if at all. Therefore in the RNA polymerase II 584 

based system, translation of genomic reporter (Fluc) from initial transcripts can mask that 585 

from replicase-generated RNAs. Use of non-capped transcripts made by RNA polymerase I 586 

avoids this effect. 587 

It was also observed that in contrast to replication in mammalian cells, replication in mosquito 588 

cells resulted in abnormally high SG to genomic RNA ratio (Fig. 3B and 4B). This may relate 589 

to the use of a truncated 3’ UTR in the template RNAs. The native 3’ UTR of CHIKV 590 

LR2006OPY1 strain comprises 498 nucleotide residues. In contrast, template RNAs used in 591 

this study contain only the last 110 nucleotides (36). The missing part of CHIKV 3’ UTR 592 

contains repeated sequence motifs which have only a minimal effect on CHIKV replication in 593 

mammalian cells (60). In contrast, however, a deletion of this region caused a prominent 594 

reduction of CHIKV replication in both Aedes aegypti and Aedes albopictus cells (61). To the 595 

best of our knowledge, the molecular basis of this defect has not been reported. Thus, it is 596 

plausible that the defect may include a shift of SG to genomic RNA ratio into the favor of the 597 

former. This shift might reflected an altered ratio of synthesis or instability of bicistronic 598 

genomic RNA with truncated 3’ UTR. If so, this trans-replication system may serve as useful 599 

tool for studies on the role of the upstream part of 3’ UTR in RNA synthesis and/or stability. 600 

Such an analysis was, however, outside the scope of current study.  601 

As shown here, alphavirus replicase can use RNA polymerase I generated RNAs as templates; 602 

this emphasizes that the 5’ cap-structure is not required for RNA replication. Even the 603 

ribozyme-generated 5’ ends that lack 5’ phosphate can still be used by alphavirus replicase. 604 

At the same time it is well known that in vitro generated non-capped transcripts from 605 

alphavirus icDNAs are not infectious. Our data indicate that this is most likely a consequence 606 

of low level of replicase proteins synthesis rather than a lack in the ability of the replicase to 607 
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use such transcripts as templates. If so, the role of the cap-structure of viral RNA is to ensure 608 

the correct level of ns-protein expression, stabilize the RNA in the cellular environment (62) 609 

and prevent its recognition by cellular pattern recognition receptors. It has been recently 610 

demonstrated that alphaviruses synthesise non-capped RNAs in normal infection and that 611 

these RNAs are packed into virions (62). Furthermore, it was subsequently shown that an 612 

artificial increase of capping efficiency leads to overproduction of viral nsPs and decrease of 613 

virion formation (63). Authors of these studies did also reveal that virions made in 614 

mammalian cells contain mostly non-capped RNAs while virions made in mosquito cells 615 

contain mostly capped RNAs and have therefore lower particle per PFU ratios (62). These 616 

findings clearly correlate with the behavior of our trans-replication templates. In mammalian 617 

cells, the replicase of an incoming virus was capable to use both capped and non-capped 618 

template RNAs equally well resulting in similar final levels of marker expression (Fig. 5A). 619 

In C6/36 mosquito-derived cells, capped transcripts performed clearly better reaching higher 620 

expression levels (Fig. 5B). This may indicate that in C6/36 cells the non-capped RNAs are 621 

used by viral replicase less efficiently than capped ones. The lack of cap applies, however, 622 

only for the initial replication event as CHIKV replicase facilitates the capping of the RNAs 623 

made by the formed replication complexes; hence thereafter the replication process in the cell 624 

should proceed identically regardless the capping status of initial RNA transcripts. If so, the 625 

lower efficiency of replication (Fig. 5) could indicate that replication is initiated in relatively 626 

few C6/36 cells. A similar phenomenon has previously been observed in C6/36 cells 627 

transfected with a construct expressing SINV template; upon infection with SINV the 628 

replication of the RNA template was evident in only ~5% of the infected cells (48). In line 629 

with these observations we have identified several replicase mutations that boosted replication 630 

of the CHIKV template RNA in mosquito cells between 10-30-fold (39). In contrast, a 631 

mutation in P1234 that is capable of boosting replication of template RNA in mammalian cell 632 
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considerably above the level achieved by wt P1234 has never been identified. All these 633 

findings indicate that initiation of template-RNA replication in mosquito cells by virus-634 

encoded replicase is relatively inefficient. Most likely it is a consequence of the different 635 

environment in mammalian and mosquito cells. The initiation of template RNA replication is 636 

a complex process which includes RNA recognition by virus and host encoded replicase 637 

components, their interaction with host cell membranes, formation and maturation of 638 

replication complexes and so on; analysis of this multi-step process is the topic of on-going 639 

research in our laboratories and different template-RNA expression constucts represent 640 

valuable tools for such studies. 641 

As shown in previous studies, alphavirus trans-replicase is an excellent tool for the analysis of 642 

nsPs functions. Here we took advantage of the increased sensitivity of the RNA polymerase I 643 

based system and analysed the effects of different mutations on the ability of CHIKV nsP1 to 644 

support viral RNA synthesis. The analysis not only confirmed our previous findings that the 645 

C-terminus of nsP1 tolerates insertion of eGFP tag (36) but revealed also that such a tag can 646 

be incorporated into the N-terminus of nsP1. Though the replicase harboring such a tag had 647 

severely diminished activity the finding still clearly demonstrates that N-terminally tagged 648 

nsP1 is a functional protein. It is unclear why an insertion of eGFP to the N-terminus of nsP1 649 

has higher negative impact on its function compared to a similar insertion in the C-terminal 650 

region. It may be a consequence of the N-terminus proximity to important functional motifs 651 

such as the catalytic His residue of guanylyltransferase and the catalytic Asp residue of 652 

methyltransferase, being located only 37 and 63 amino acid residues downstream, 653 

respectively (64). At this point it is not clear whether the similarity of properties of P
E
1234 654 

and P1
DA

234 (Fig. 5) is coincidental or reflects the similar nature of the defect (presumably 655 

lack of RNA capping) caused by these mutations. It was also found that mutations Y248A and 656 

R252E, counterparts of which have been shown to abolish ability of SFV replicase to 657 
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synthesize positive-strand RNAs (37), severely reduced but did not completely blocked 658 

CHIKV replicase activity. In these cases, the observed difference between SFV and CHIKV 659 

could most likely be explained by the more sensitive assay used in this study and the 660 

temperature sensitive nature of the defect(s) caused by R252E mutation. More likely than not, 661 

both of these mutations affect SFV and CHIKV in the same way. In contrast, the effect of 662 

mutation in the palmitoylation site of CHIKV nsP1 was clearly different from that reported in 663 

SFV. No activity of this mutant CHIKV genome or its replicase was evident in our studies 664 

indicating the lethal nature of the mutation. Interestingly, another defect of similar type has 665 

also been described. Inability of nsP3 of SFV to bind cellular G3BP proteins results in 666 

attenuated phenotype (65); in contrast, binding of G3BPs by nsP3 is crucial for CHIKV 667 

replication (12). nsP1 palmitoylation is required for correct interactions of alphavirus 668 

replicase proteins and their association with membranes (56). It has also been suggested that 669 

G3BPs participate in the formation of replicase complexes (12). Therefore it can be 670 

speculated that both of these differences between CHIKV and SFV may have a common 671 

cause.  672 

The replication and transcription of reporter-encoding template RNA has been used for 673 

detection of SINV infection in mosquitoes. In vivo, up to ten-fold activation of reporter 674 

expression upon infection by homologous virus was observed. Interestingly, when the same 675 

experiment was performed using transiently transfected C6/36 cells, the boost of marker 676 

expression was more modest, ~2-fold (48). In a comparable setup, both Ubi-Fluc-Gluc and 677 

AlbPolI-Fluc-Gluc derived template RNAs showed ~55-fold boost of reporter expression 678 

(Fig. 5B) clearly outperforming the previously analysed SINV template construct. Therefore 679 

it is likely that the constructs reported in this study would have superior properties that would 680 

make them suitable for the generation of stable insect cell lines and transgenic mosquitoes. 681 

The same applies, likely to much bigger extent, to mammalian cells and HSPolI-Fluc-Gluc 682 
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template expression construct. In a transient setup, nearly 30,000-fold activation of Gluc 683 

expression was observed upon virus infection (Fig 5A). As the background of the Gluc 684 

expression was negligible and the on/off ratio as good or superior to any reported inducible 685 

expression system to-date, the design may have several potential uses. This includes in vitro 686 

applications such as inducible expression of toxic proteins in cell culture or construction of 687 

cell lines for easy detection and quantification of alphavirus infection. In addition, a potential 688 

in vivo application might be the generation, through transgenesis, of animals carrying such an 689 

inducible reporter. This could in principle be used to monitor and trace virus infection with 690 

unprecedented sensitivity and accuracy.  691 

  692 
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MATERIALS AND METHODS 693 

Cells. 694 

All mammalian cell lines were maintained at 37°C in a humidified atmosphere with 5% CO2. 695 

U2OS human bone osteosarcoma cells (ATCC HTB-96) were maintained in Iscove's 696 

modified Dulbecco's medium (Gibco) containing 10% fetal bovine serum (FBS; GE 697 

Healthcare) and 2 mM L-glutamine. Vero E6 African green monkey kidney cells (ATCC 698 

CCL-81) were grown in Dulbecco’s modified Eagle’s medium (Gibco) containing 10% FBS 699 

and 2 mM L-glutamine. BHK-21 baby hamster kidney cells (ATCC CCL-10) were grown in 700 

Glasgow’s minimal essential medium (Gibco) containing 10% FBS, 2% tryptose phosphate 701 

broth (TPB) and 200 mM HEPES pH 7.2. All mosquito-derived cell lines were maintained at 702 

28°C with no additional CO2. Aedes albopictus C6/36 cells were maintained in Leibowitz’s L-703 

15 medium (Corning) containing 10% FBS. Aedes aegypti Aag2 cell-derived Dicer2 knockout 704 

cell line AF319 (66) was maintained in Leibowitz’s L-15 medium (Corning) containing 20% 705 

FBS, 10% TPB and 1X non-essential amino acids. All media were supplemented with 100 706 

U/mL penicillin and 0.1 mg/mL streptomycin. 707 

Construction of plasmids for production of RNA templates in mammalian cells. 708 

CMV-Fluc-Gluc, a vector designed for expression of replication-competent template RNA of 709 

CHIKV using cellular RNA polymerase II in mammalian cells, has been previously described 710 

(36). A 193 bp long sequence, corresponding to 137 5’ residues of TMV including 23 first 711 

codons of its replicase ORF followed by three in-frame stop codons and a HH RZ designed to 712 

cleave RNA transcript immediately upstream of the residue corresponding to the 5’ end of 713 

CHIKV genome, was inserted between the start site of CMV promoter and the beginning of 714 

CHIKV-specific sequence in CMV-Fluc-Gluc using synthetic DNA fragments (Genscript, 715 

USA) and subcloning procedures; the generated plasmid was designated CMV-HH-Fluc-716 

Gluc. Similarly, a synthetic DNA fragment containing sequences corresponding to human 717 
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RNA polymerase I promoter (residues from -211 to +20 with respect to transcription start 718 

site) and HH RZ was used to replace T7 RNA promoter in T7-Fluc-Gluc (36); a 100 bp long 719 

sequence, corresponding to mouse RNA polymerase I terminator, was inserted downstream of 720 

the sequence corresponding to HDV RZ. The generated plasmid was designated HSPolI-HH-721 

Fluc-Gluc. The deletion of sequence corresponding to the downstream region of human RNA 722 

polymerase I promoter (residues +1 to +20) and HH RZ was performed using PCR-based 723 

mutagenesis, the generated plasmid was designated HSPolI-Fluc-Gluc. Finally, the human 724 

RNA polymerase I promoter in HSPolI-Fluc-Gluc was replaced by the corresponding 725 

sequence (positions -227 to -1 with respect to transcription start site) of Chinese hamster 726 

(Cricetulus griseus) resulting in a plasmid designated CGPolI-Fluc-Gluc (Fig. 1B). Sequence 727 

of all plasmids was verified using Sanger sequencing. Sequences from residue -10 of 728 

promoter to residue 10 of CHIKV are shown in Table 1; full sequences are available from 729 

authors upon request.  730 

Construction of plasmids for production of RNA templates in mosquito cells. 731 

Ubi-Fluc-Gluc, a vector designed for the expression of replication-competent template RNA 732 

of CHIKV using cellular RNA polymerase II in mosquito cells, has been previously described 733 

(39). To obtain mosquito RNA polymerase I based constructs, an intron, present in Ubi-Fluc-734 

Gluc, was removed. As the RNA polymerase I promoters of Aedes aegypti and Aedes 735 

albopictus share little similarity (45, 46) separate vectors for template RNA production were 736 

constructed for cells derived from these two mosquito species. To obtain a vector for Aedes 737 

albopictus cells, the polyubiquitin promoter and Simian virus 40 terminators of Ubi-Fluc-738 

Gluc were replaced with Aedes albopictus RNA polymerase I promoter and putative 739 

terminator (100 bp), respectively. A 250 bp promoter fragment (residues -250 to -1) was used, 740 

such that the first nucleotide of the CHIKV genome corresponds to the transcription start. The 741 

generated plasmid was designated AlbPolI-Fluc-Gluc. Similar substitutions were made using 742 
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the RNA polymerase I promoter (residues -250 to -1) and putative terminator (100 bp) of 743 

Aedes aegypti. This resulted in a plasmid designated AegPolI-Fluc-Gluc. Finally, the 744 

sequence corresponding to residues +1 to +50 of RNA polymerase I promoter of Aedes 745 

aegypti followed by the sequence corresponding to a HH RZ, was inserted between start site 746 

of promoter and the residue corresponding to the 5’ end of CHIKV genome in AegPolI-Fluc-747 

Gluc; the resulting plasmid was designated AegPolI-HH-Fluc-Gluc (Fig. 2B). Sequence of all 748 

plasmids was verified using Sanger sequencing. Sequences from residue -10 of promoter to 749 

residue 10 of CHIKV are shown in Table 1; full sequences are available from authors upon 750 

request.  751 

Construction of plasmids for expression of mutant replicase and mutant icDNA 752 

constructs.  753 

Construction of CMV-P1234, CMV-P1234
GAA

, CMV-P1
E
234-A, CMV-P1

E
234-B, CMV-754 

P1
E
234-C, CMV-P1

E
234-D, CMV-P1234

E
, CMV-P12

EK
34, CMV-P12

EKPG
34, CMV-755 

P12
KN

34, CMV-P1
DA

234 and CMV-P1
WA

234 has been previously described (36, 39). In order 756 

to generate constructs designated CMV-P12
CA

34, CMV-P12
WA

34 and CMV-P12
CASA

34 the 757 

region corresponding to mutated nsP2 protease was transferred from T7-P12
CA

34, T7-758 

P12
WA

34 and T7-P12
CA+SA

34 plasmids (8) to the CMV-P1234 plasmid. To fuse eGFP to the 759 

N-terminus of nsP1 a flexible Gly-Gly-Ser-Gly-Gly-Ser linker was added to the C-terminus of 760 

eGFP. Using site-directed PCR mutagenesis and subcloning, a plasmid designated CMV-761 

P
E
1234 was generated. Additional point mutations were incorporated in CMV-P1234 using 762 

site-directed PCR mutagenesis: Y248A (CMV-P1
YA

234), R252E (CMV-P1
RE

234) and 763 

substitution of cysteine residues 417-419 of nsP1 to alanine residues (CMV-P1
3C3A

234). The 764 

latter three mutations as well as D63A substitution were also incorporated into CMV-ICRES1 765 

(also called DREP-ICRES1), an icDNA clone of CHIKV LR2006OPY1 isolate (67) using 766 

site-directed PCR mutagenesis and subcloning procedures. The resulting clones were 767 
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designated CMV-ICRES1
DA

, CMV-ICRES1
YA

, CMV-ICRES1
RE

 and CMV-ICRES1
3C3A

. 768 

Sequence of all plasmids was verified using Sanger sequencing.  769 

Trans-replication assay. 770 

The trans-replication assay was performed as previously described (36). Briefly, U2OS, Vero 771 

E6 and BHK-21 cells grown in 12-well plates were co-transfected with 1 µg of template-772 

expressing vector (CMV-Fluc-Gluc, CMV-HH-Fluc-Gluc, HSPolI-HH-Fluc-Gluc, HSPolI-773 

Fluc-Gluc or CGPolI-Fluc-Gluc) and 1 µg of CMV-P1234 (or its mutant variants) using 774 

Lipofectamine LTX (Thermo Fisher Scientific) reagent according to the manufacturer’s 775 

instructions. Transfected cells were incubated at 37
o
C for 18 h. C6/36 and AF319 cells grown 776 

in 12-well plates were co-transfected with 0.5 µg of template expressing vector (Ubi-Fluc-777 

Gluc, AegPolI-HH-Fluc-Gluc, AegPolI-Fluc-Gluc or AlbPolI-Fluc-Gluc) and 0.5 µg of Ubi-778 

P1234 (or its mutant variants) using Lipofectamine LTX and incubated at 28
o
C for 48 h. After 779 

incubation, cells were lysed and Fluc and Gluc activities were measured using the Dual-780 

Luciferase-Reporter assay on a Glomax SIS luminometer (Promega). All Fluc and Gluc 781 

activities were normalized to these obtained for cells co-transfected with plasmids expressing 782 

corresponding template RNA and CMV-P1234
GAA

 or Ubi-P1234
GAA

 (for mammalian and 783 

mosquito cell experiments, respectively) controls. All assays were repeated at least three 784 

times. 785 

Northern blotting.  786 

U2OS, BHK-21, C6/36 and AF319 cells were co-transfected with plasmids coding for 787 

CHIKV replicase and RNA template as described above. At 18 h (U2OS, BHK-21) or 48 h 788 

(C6/36, AF319) post-transfection total RNA was extracted using TRIzol® reagent (Life 789 

Technologies). Equal amounts of total RNA (for mammalian cells: 2 µg for positive and 10 790 

µg for negative strand analysis; for mosquito cells: 10 µg for positive and 10 µg for negative 791 

strand analysis) were denatured for 10 min at 70°C in 2X RNA loading dye (Thermo 792 
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Scientific), cooled on ice and separated on a denaturing gel (1% agarose/6% formaldehyde) 793 

using 1X MOPS buffer. RNA was transferred to a Hybond-N+ filter (GE Healthcare) and 794 

fixed using a UV Stratalinker 1800 (Stratagene). Digoxigenin (DIG)-labelled RNA probe 795 

complementary to residues 42-390 of the sequence encoding for Gluc marker was used to 796 

detect positive-strand RNAs; probe corresponding to residues 51-376 of the sequence 797 

encoding for Fluc marker was used to detect negative-strand RNAs. Filters were hybridized 798 

overnight; blots were washed and developed according to the manufacturer's (Roche) 799 

protocols. 800 

Activation of template replication by CHIKV infection.  801 

U2OS cells grown in 12-well plates were transfected with CMV-Fluc-Gluc or HSPolII-Fluc-802 

Gluc plasmids. C6/36 cells grown in 12-well plates were transfected with Ubi-Fluc-Gluc or 803 

AlbPolI-Fluc-Gluc plasmids. At 18 h (U2OS) or 36 h (C6/36) post transfection cells were 804 

either infected with CHIKV at an MOI 10 or mock-infected. At 24 h (U2OS) or 72 h (C6/36) 805 

post-infection (h.p.i) cells were collected, lysed and Fluc and Gluc activities were measured 806 

as described above. 807 

Virus rescue and infectious centre assay.   808 

Virus rescue in BHK-21 cells was performed as previously described (68) . ICA was 809 

performed essentially as previously described (49) except that cells were transfected with 5 810 

µg of endotoxin-free plasmids CMV-ICRES1, CMV-ICRES1
DA

, CMV-ICRES1
YA

, CMV-811 

ICRES1
RE

 or CMV-ICRES1
3C3A

. Virus stocks were collected at 24 h (wt CHIKV) or at 48 h 812 

(mutant CHIKV variants) post transfection. Obtained stocks were clarified by centrifugation 813 

at 3000xg for 10 minutes and virus titers were determined using standard plaque assay on 814 

BHK-21 cells.  815 

The transfected cells were collected at the same time as corresponding stocks. Cells were 816 

lysed by boiling in SDS gel-loading buffer (100 mM Tris-HCl pH 6.8, 4% SDS, 20% 817 
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glycerol, 200 mM DTT, and 0.2% bromophenol blue). Lysate corresponding to 50,000 818 

transfected cells was loaded on a 10% polyacrylamide gel. Proteins were separated by SDS-819 

PAGE, transferred to polyvinylidene difluoride membranes, and detected using antibodies 820 

against CHIKV capsid protein (in-house); β-actin (sc-47778; Santa Cruz Biotechnology) was 821 

used as a loading control. The membranes were then incubated with appropriate secondary 822 

antibodies conjugated to fluorescent labels (LI-COR) and proteins were visualized using a LI-823 

COR Odyssey Fc imaging system.  824 

Statistical analysis.  825 

Statistical analysis was done using GraphPad Prism software. Data were analyzed using 826 

Student’s unpaired one tailed t-test. 827 
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FIGURES. 1040 

Figure 1. 1041 

Schematic representation of CMV-P1234 plasmid for CHIKV replicase expression and 1042 

plasmids for expression of RNA templates used in mammalian cells. (A) Expression 1043 

construct for CHIKV ns-proteins. CMV - CMV IE promoter; LI – leader region of herpes 1044 

simplex virus thymidine kinase gene with an artificial intron; SV40Ter - SV40 late 1045 

polyadenylation region. Red arrow highlights the position of the inactivating mutation in the 1046 

nsP4 catalytic site. (B) Constructs expressing template RNAs. CMV* - CMV IE promoter 1047 

followed by TMV-derived leader; HSPolI* – full-length (-211 to +20) promoter for human 1048 

RNA polymerase I; HSPolI – truncated (-211 to -1) promoter for human RNA polymerase I; 1049 

CGPolI – truncated (-227 to -1) promoter for Chinese hamster RNA polymerase I; HH RZ– 1050 

hammer head ribozyme. The 5′ and 3′ UTRs are from CHIKV; N77 - region encoding for the 1051 

77 N-terminal amino acid residues of nsP1; SG - CHIKV SG promoter; HDV RZ - antisense 1052 

strand ribozyme of hepatitis delta virus, MmTer – terminator for RNA polymerase I from 1053 

mouse (Mus musculus). The position of the second intron of the human beta globin gene 1054 

(hBG) in CMV-Fluc-Gluc and CMV-HH-Fluc-Gluc is marked. The vector backbone is not 1055 

shown, drawings are not in scale. 1056 

 1057 

Figure 2. 1058 

Schematic representation of Ubi-P1234 plasmid for CHIKV replicase expression and 1059 

plasmids for expression of RNA templates used in mosquito cells. (A) Expression 1060 

construct for CHIKV ns-polyprotein. Ubi* - full-length Aedes aegypti polyubiquitin 1061 

promoter; UL - transcribed leader of polyubiquitine gene containing naturally occurring 1062 

intron; SV40Ter - SV40 late polyadenylation region. Red arrow highlights the position of the 1063 

inactivating mutation in the nsP4 catalytic site. (B) Constructs expressing template RNAs. 1064 
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Ubi – truncated polyubiquitine promoter; AegPolI* – full-length (-250 to +50) promoter for 1065 

Aedes aegypti RNA polymerase I; AegPolI – truncated (-250 to -1) promoter for Aedes 1066 

aegypti RNA polymerase I; AlbPolI – truncated (-250 to -1) promoter for Aedes albopictus 1067 

RNA polymerase I; HH RZ – hammer head ribozyme; AegTer – tentative terminator for 1068 

Aedes aegypti RNA polymerase I; AlbTer – tentative terminator for Aedes albopictus RNA 1069 

polymerase I. The 5′ and 3′ UTRs are from CHIKV; N77 - region encoding for the 77 N-1070 

terminal amino acid residues of nsP1; SG - CHIKV SG promoter; HDV RZ - antisense strand 1071 

ribozyme of hepatitis delta virus. In Ubi-Fluc-Gluc, the position of the second intron of the 1072 

Drosophila melanogaster alcohol dehydrogenase gene (int) is marked. The vector backbone is 1073 

not shown, drawings are not in scale. 1074 

 1075 

Figure 3.  1076 

Comparison of template constructs in mammalian cells. (A) U2OS, Vero E6 and BHK-21 1077 

cells were all co-transfected with CMV-P1234 and one of CMV-Fluc-Gluc (CMV), CMV-1078 

HH-Fluc-Gluc (CMV HH), HSPolI-Fluc-Gluc (HSPolI), HSPolI-HH-Fluc-Gluc (HSPolI 1079 

HH), or CGPolI-Fluc-Gluc (CGPolI). Control cells were all co-transfected with CMV-1080 

P1234
GAA

 and the same template-expressing plasmids. Cells were lysed at 18 h post 1081 

transfection. Fluc (replication, left panel) and Gluc (transcription, right panel) activities 1082 

generated by the active replicase were normalized to controls. Each column represents an 1083 

average of three independent experiments; error bars represent standard deviation. * 1084 

designates p<0.05, ** designates p<0.01, *** designates p<0.001 and **** designates 1085 

p<0.0001, ns – not significant (Student’s unpaired t-test). (B) U2OS and BHK-21 cells were 1086 

all co-transfected with CMV-P1234 and one of CMV-Fluc-Gluc, CMV-HH-Fluc-Gluc, 1087 

HSPolI-HH-Fluc-Gluc, HSPolI-Fluc-Gluc or CGPolI-Fluc-Gluc; control cells were all co-1088 

transfected with CMV-P1234
GAA

 and the same template-expressing plasmids or were mock-1089 
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transfected. Samples were collected at 18 h post transfection. RNA was analyzed by northern 1090 

blotting using a probe corresponding to the Fluc reporter gene to detect negative strands 1091 

(lower panel) or probe complementary to Gluc reporter gene to detect positive strands (upper 1092 

panel). “Genomic RNA” designates the full-length template RNA; note that an RNA of same 1093 

size is also synthesized by cellular RNA polymerases I and II and is therefore at the cases of 1094 

some promoters also detectable at the presence of inactive replicases (GAA). “Subgenomic 1095 

RNA” designates RNA synthesized by CHIKV replicase using the SG promoter. The 1096 

experiment was repeated two times with similar results; data from one experiment is shown. 1097 

 1098 

Figure 4.  1099 

Comparison of template constructs in mosquito cells. (A) C6/36 and AF319 cells were all 1100 

co-transfected with Ubi-P1234 and one of Ubi-Fluc-Gluc (Ubi), AegPolI-Fluc-Gluc 1101 

(AegPolI), AegPolI-HH-Fluc-Gluc (AegPolI HH) or AlbPolI-Fluc-Gluc (AlbPolI). Control 1102 

cells were all co-transfected with Ubi-P1234
GAA

 and the same template-expressing plasmids. 1103 

Cells were lysed at 48 h post transfection. Fluc (replication, left panel) and Gluc 1104 

(transcription, right panel) activities generated by the active replicase were normalized to 1105 

controls. Each column represents an average of three independent experiments; error bars 1106 

represent standard deviation. * designates p<0.05, ** designates p<0.01, ns – not significant 1107 

(Student’s unpaired t-test). (B) C6/36 and AF319 cells were all co-transfected with Ubi-1108 

P1234 and one of Ubi-Fluc-Gluc, AlbPolI-Fluc-Gluc, AegPolI-Fluc-Gluc or AegPolI-HH-1109 

Fluc-Gluc; control cells were all co-transfected with Ubi-P1234
GAA

 and the same template-1110 

expressing plasmids or were mock-transfected. Samples were collected at 48 h post 1111 

transfection. Positive-strand RNAs were revealed and the data is presented as described for 1112 

Fig. 3B except that 5-fold more total RNA and longer exposure were used to obtain the 1113 
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image. The experiment was repeated two times with similar results; data from one experiment 1114 

is shown. 1115 

Figure 5.  1116 

CHIKV infection triggers replication and transcription of template RNAs produced 1117 

from CMV-Fluc-Gluc, HSPolI-Fluc-Gluc, Ubi-Fluc-Gluc and AlbPolI-Fluc-Gluc 1118 

plasmids. (A) U2OS cells were transfected with  CMV-Fluc-Gluc or HSPolI-Fluc-Gluc 1119 

plasmids. At 18 h post transfection cells were either infected with CHIKV at an MOI 10 or 1120 

mock-infected. Cells were collected at 24 h p.i., lysed and Fluc (replication, left panel) and 1121 

Gluc (transcription, right panel) activities measured and normalized to the number of 1122 

transfected cells. (B) C6/36 cells were transfected with Ubi-Fluc-Gluc or AlbPolI-Fluc-Gluc 1123 

plasmids. At 36 h post transfection cells were either infected with CHIKV at an MOI 10 or 1124 

mock-infected. Cells were collected at 72 h p.i., lysed and Gluc activities measured and 1125 

normalized to the number of transfected cells. Each column represents an average of at least 1126 

three independent experiments; error bars represent standard deviation. **** designates 1127 

p<0.0001 (Student’s unpaired t-test). 1128 

 1129 

Figure 6.  1130 

Re-evaluation of activities of replicase mutants possessing no or strongly reduced RNA 1131 

synthesis abilities. U2OS cells were all co-transfected with HSPolI-Fluc-Gluc and one of 1132 

CMV-P
E
1234, CMV-P1

E
234-A, CMV-P1

E
234-B, CMV-P1

E
234-C, CMV-P1

E
234-D, CMV-1133 

P1234
E
, CMV-P1

DA
234, CMV-P1

WA
234, CMV-P12

EK
34, CMV-P12

EKPG
34, CMV-P12

KN
34, 1134 

CMV-P12
CA

34, CMV-P12
WA

34 or CMV-P12
CA+SA

34. Control cells were co-transfected with 1135 

HSPolI-Fluc-Gluc and CMV-P1234 or CMV-P1234
GAA

. Cells were lysed at 18 h post 1136 

transfection. (A) Fluc (replication) and (B) Gluc (transcription) activities generated by the 1137 

active replicase were normalized to controls. Each column represents an average of three 1138 
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independent experiments; error bars represent standard deviation. Names of mutant 1139 

polyproteins expressed by replicase expression plasmids are indicated below the graphs. With 1140 

exceptions of these marked „ns“ (not significant) all other mutants showed activity 1141 

significantly higher compared to negative control (P1234
GAA

) (Student’s unpaired t-test). 1142 

 1143 

Figure 7.  1144 

Effects of mutations in nsP1 of CHIKV for infectious virus rescue and trans-replicase 1145 

activities in mammalian and mosquito cells. (A) BHK-21 cells were transfected with one of 1146 

the following plasmids: CMV-ICRES1, CMV-ICRES1
DA

, CMV-ICRES1
YA

, CMV-ICRES1
RE

 1147 

or CMV-ICRES1
3C3A

. Left: results of ICA. Right: western blot of lysates from transfected 1148 

cells collected at 24 h p.t. CHIKV capsid protein was revealed by corresponding rabbit 1149 

polyclonal antiserum; β-actin was used as loading control. Data from one reproducible 1150 

experiment out of two independent expreiments is shown. (B) U2OS cells were all co-1151 

transfected with HSPolI-Fluc-Gluc and one of CMV-P1234, CMV-P1
DA

234, CMV-P1
YA

234, 1152 

CMV-P1
RE

234, CMV-P1
WA

234, CMV-P1
3C3A

234 or CMV-P1234
GAA

. Samples were 1153 

collected at 18 h post transfection. Production of positive-strand RNAs was estimated 1154 

measuring activities of Fluc (left panel) and Gluc (right panel) as described in Fig 3A. Each 1155 

column represents an average of three independent experiments; error bars represent standard 1156 

deviation. Viral protein expression was verified by western blotting using anti-nsP1 1157 

antiserum. (C) AF319 cells were all co-transfected with AegPolI-Fluc-Gluc and one of Ubi-1158 

P1234, Ubi-P1
DA

234, Ubi-P1
YA

234, Ubi-P1
RE

234, Ubi-P1
WA

234, Ubi-P1
3C3A

234 or Ubi-1159 

P1234
GAA

. Samples were collected at 48 h post transfection. Production of positive-strand 1160 

RNAs was estimated measuring activities of Fluc (left panel) and Gluc (right panel) as 1161 

described in Fig 3A. Each column represents an average of three independent experiments; 1162 
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error bars represent standard deviation. Viral protein expression was verified by western 1163 

blotting as described in panel B. 1164 

 1165 

 1166 
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  Table 1. Sequences of promoter – CHIKV 5’ UTR junctions for plasmids expressing template RNAs 

Plasmid Promoter 
residues  
-10 to -1 

Downstream part of promoter Leader +HH RZ (bold) CHIKV 
residues 1-10 

CMV-Fluc-
Gluc 

AGTGAACCGT - - ATGGCTGCGT

CMV-HH-
Fluc-Gluc 

AGTGAACCGT - GTATTTTTACAACAATTACCAACAACAACAAACAACAAACAACATTAC 

AATTACTATTTACAATTACAATGGCATACACACAGACAGCTACCACAT 

CAGCTTTGCTGGACACTGTCCGAGGAAACAACTCCTTGGTCTAATAAT 

AAAGCCATCTGATGAGAGCGAAAGCTCGAAACTGGAGGAAACTCCAGTC

ATGGCTGCGT

HSPolI-HH-
Fluc-Gluc 

CCGGGTTATT GCTGACACGCTGTCCTCTGG AGCCATCTGATGAGAGCGAAAGCTCGAAACTGGAGGAAACTCCAGTC ATGGCTGCGT

HSPolI-
Fluc-Gluc 

CCGGGTTATT - - ATGGCTGCGT

CGPolI-
Fluc-Gluc 

TGACACGCTT - - ATGGCTGCGT

Ubi-Fluc-
Gluc 

AAACCAGCTC - - ATGGCTGCGT

AegPolI-
HH-Fluc-
Gluc 

AAAACCCTTC AGGGAGGAAGGCAGTGT 

GCGTGGACCGGCAGGAA 

AATGTTCCGAAAGCAA 

AGCCATCTGATGAGAGCGAAAGCTCGAAACTGGAGGAAACTCCAGTC ATGGCTGCGT

AegPolI-
Fluc-Gluc 

AAAACCCTTC - - ATGGCTGCGT

AlbPolI-
Fluc-Gluc 

AAAACCCTAT - - ATGGCTGCGT
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