10 research outputs found

    Processing of Apple Pomace for Bioactive Molecules

    No full text
    The growth of horticulture industries worldwide has generated huge quantities of fruit wastes (25%–40% of the total fruits processed). These residues are generally a good source of carbohydrates, especially cell wall polysaccharides and other functionally important bioactive molecules such as proteins, vitamins, minerals and natural antioxidants. “Apple pomace” is a left-over solid biomass with a high moisture content, obtained as a by-product during the processing of apple fruits for juice, cider or wine preparation. Owing to the high carbohydrate content, apple pomace is used as a substrate in a number of microbial processes for the production of organic acids, enzymes, single cell protein, ethanol, low alcoholic drinks and pigments. Recent research trends reveal that there is an increase in the utilization of apple pomace as a food processing residue for the extraction of value added products such as dietary fibre, protein, natural antioxidants, biopolymers, pigments and compounds with unique properties. However, the central dogma is still the stability, safety and economic feasibility of the process(s)/product(s) developed. This review is mainly focused on assessing recent research developments in extraction, isolation and characterization of bioactive molecules from apple pomace, along with their commercial utilization, in food fortification

    Intracisternal administration of cholecystokinin-8 counteracts the central cardiovascular effects of adrenaline and NPY. A study based on the coexistence of cholecystokinin, phenylethanolamine N-methyltransferase and neuropeptide Y immunoreactivity in neurons of the nucleus tractus solitarius

    No full text
    (1) In the present study the occlusion method was employed to evaluate the overall coexistence of neuropeptide Y and phenylethanolamine-N-methyl transferase, neuropeptide Y and tyrosine hydroxylase as well as cholecystokinin and phenylethanolamine-N-methyl transferase immunoreactivity in nerve cell bodies of the dorsal subnuclei of the nucleus tractus solitarius of the male rat. A high degree of coexistence was established for neuropeptide Y/phenylethanolamine-N-methyl transferase, cholecystokinin/phenylethanolamine-N-methyl transferase and for tyrosine hydroxylase/neuropeptide Y immunoreactivity. (2) Sulfated [12I]cholecystokinin-8 was used as radioligand to study the densities of cholecystokinin-8 binding sites in the dorsal medulla oblongata by means of quantitative receptor autoradiography. High densities of binding sites were observed in parts of the nucleus tractus solitarius and in the area postrema. Labeling was also observed in the dorsal motor nucleus of the vagus. (3) In the physiological studies adrenaline (0.15-1.0 nmol), neuropeptide Y (0.075-0.75 nmol) and sulfated cholecystokinin-8 (0.3-3.0 nmol) were administered alone or in combination with neuropeptide Y or adrenaline intracisternally into α-chloralose anaesthetized male rats. Especially the hypotensive and bradycardic responses of adrenaline were counteracted in the adrenaline/cholecystokinin co-treated animals, whereas the cardiovascular effects of neuropeptide Y when co-administered with cholecystokinin-8 (0.3 nmol) appeared to be more resistant to the antagonistic effect of cholecystokinin 8. In addition, cholecystokinin-8 further enhanced the neuropeptide Y-induced bradynpnea and increase in the tidal volume. The present results indicate the existence of neuropeptide Y, adrenaline and cholecystokinin-8 immunoreactivity in the same neurons of the dorsal subnuclei of the nucleus tractus solitarius. Furthermore, binding sites for cholecystokinin-8 seem to at least partly co-distribute with α-2 adrenergic and neuropeptide Y binding sites in the nucleus tractus solitarius. In the functional analysis, an antagonistic interaction between cholecystokinin-8 and adrenaline as well as between cholecystokinin and neuropeptide Y is demonstrated opening up the possibility that cholecystokinin peptides act as intrinsic modulators in the putative cholecystokinin/neuropeptide Y/adrenaline synapses in the nucleus tractus solitarius. © 1987.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Biomarkers in neuropsychiatry: a prospect for the twenty-first century?

    Get PDF
    The search for biomarkers to aid in the diagnosis and prognosis of psychiatric conditions and predict response to treatment is a focus of twenty-first century medicine. The current lack of biomarkers in routine use is attributable in part to the existing way mental health conditions are diagnosed, being based upon descriptions of symptoms rather than causal biological evidence. New ways of conceptualizing mental health disorders together with the enormous advances in genetic, epidemiological, and neuroscience research are informing the brain circuits and physiological mechanisms underpinning behavioural constructs that cut across current diagnostic DSM-5 categories. Combining these advances with ‘Big Data’, analytical approaches offer new opportunities for biomarker development. Here we provide an introductory perspective to this volume, highlighting methodological strategies for biomarker identification; ranging from stem cells, immune mechanisms, genomics, imaging, network science to cognition. Thereafter we emphasize key points made by contributors on affective disorders, psychosis, schizophrenia, and autism spectrum disorder. An underlying theme is how preclinical and clinical research are informing biomarker development and the importance of forward and reverse translation approaches. In considering the exploitation of biomarkers we note that there is a timely opportunity to improve clinical trial design informed by patient ‘biological’ and ‘psychological’ phenotype. This has the potential to reinvigorate drug development and clinical trials in psychiatry. In conclusion, we are poised to move from the descriptive and discovery phase to one where biomarker panels can be evaluated in real-life cohorts. This will necessitate resources for large-scale collaborative efforts worldwide. Ultimately this will lead to new interventions and personalized medicines and transform our ability to prevent illness onset and treat complex psychiatric disorders more effectively
    corecore