375 research outputs found

    ANTIOXIDANT ACTIVITY OF OYSTER MUSHROOM (PLEUROTUS FLORIDA [MONT.] SINGER) AND MILKY MUSHROOM (CALOCYBE INDICA P AND C)

    Get PDF
    Objective: To evaluate the antioxidant activity of tropical edible mushrooms namely Pleurotus florida and Calocybe indica. Methods: Antioxidant potential was evaluated by using various antioxidant assays such as DPPH free radical scavenging, hydroxyl radical scavenging, nitric oxide radical scavenging, and superoxide radical scavenging activities as well as lipid peroxidation inhibiting assay, reducing power assay, ferric reducing antioxidant power (FRAP), metal chelating activity, phospho-molybdenum reduction assay and anti-haemolytic activity. Results: The results obtained from this antioxidant study strongly suggest that Pleurotus florida and Calocybe indica have significant antioxidant activity. Conclusion: Edible mushrooms Pleurotus florida and Calocybe indica are having significant antioxidant activity, could serve as easily accessible natural food rich in antioxidant which may enhance the immune system against oxidative damage and may be utilized as the potential sources of therapeutic agents

    The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    Get PDF
    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems

    Planococcus versutus sp. nov., isolated from soil

    Get PDF
    A taxonomic study was performed on a novel Gram-stain-positive, coccus-shaped, orange-pigmented motile bacterium, designated as strain L10.15T. The organism was isolated from a soil sample collected in Lagoon Island (close to Adelaide Island, western Antarctic Peninsula) using a quorum-quenching enrichment medium. Growth occurred at 4–30 °C, pH 6–11 and at moderately high salinity (0–15 %, w/v, NaCl), with optimal growth at 26 °C, at pH 7–8 and with 6 % (w/v) NaCl. 16S rRNA gene sequence analysis showed that strain L10.15T belonged to the genus Planococcus and was closely related to Planococcus halocryophilus Or1T (99.3 % similarity), Planococcus donghaensis JH1T (99.0 %), Planococcus antarcticus DSM 14505T (98.3 %), Planococcus plakortidis AS/ASP6 (II)T (97.6 %), Planococcus maritimus TF-9T (97.5 %), Planococcus salinarum ISL-6T (97.5 %) and Planococcus kocurii NCIMB 629T (97.5 %). However, the average nucleotide identity-MUMmer analysis showed low genomic relatedness values of 71.1–81.7 % to the type strains of these closely related species of the genus Planococcus . The principal fatty acids were anteiso-C15 : 0, C16 : 1ω7c and anteiso-C17 :  0, and the major menaquinones of strain L10.15T were MK-5 (48 %), MK-6 (6 %) and MK-7 (44 %). Polar lipid analysis revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and aminophospholipid. The DNA G+C content was 39.4 mol%. The phenotypic and genotypic data indicate that strain L10.15T represents a novel species of the genus Planococcus , for which the name Planococcus versutus sp. nov. is proposed. The type strain is L10.15T (=DSM 101994T=KACC 18918T)

    Realisation of CdS/Mn3O4nanocomposites for potential Photocatalytic Applications

    Full text link
    The present work reports the realisation of high-quality crystalline CdS/Mn3O4(CM) nanocomposites by a simple cost-effective chemical method in air atmosphere. The authors have performed theoretical calculations and experimental analysis in order to understand the synthesised nanocomposites. X-ray diffraction results showed that the CM nanocomposites were cubic and orthorhombic mixed structure which is in good agreement with the theoretical studies. Field emission scanning electron microscopy images of CM confirmed the formation of well distributed nanocomposites. The outcomes of DFT calculations provide results for the bandgap calculation of pure CdS, Mn3O4and the CM nanocomposites. Photoluminescence studies with interesting visible light absorption demonstrated the great potentiality of the as-synthesised nanocomposites towards photocatalytic applications that could be a detailed research scope for the authors' future studies. © 2020 Institution of Engineering and Technology. All rights reserved.Acknowledgments: The author P. Joice Sophia kindly acknowledges DST-INSPIRE Faculty Scheme (DST/INSPIRE/04/2016/ 000292) and SERB-EMR (EMR/2017/004764) for the financial support and funding. One of the authors, M. Rajesh Kumar thanks the contract no. 40/is2

    Genomic and phylogenomic insights into the family Streptomycetaceae lead to the proposal of six novel genera

    Get PDF
    The family Streptomycetaceae is a large and diverse family within the phylum Actinomycetota . The members of the family are known for their ability to produce medically important secondary metabolites, notably antibiotics. In this study, 19 type strains showing low 16S rRNA gene similarity (<97.3 %) to other members of the family Streptomycetaceae were identified and their high genetic diversity was reflected in a phylogenomic analysis using conserved universal proteins. This analysis resulted in the identification of six distinct genus-level clades, with two separated from the genus Streptacidiphilus and four separated from the genus Streptomyces . Compared with members of the genera Streptacidiphilus and Streptomyces , average amino acid identity (AAI) analysis of the novel genera identified gave values within the range of 63.9–71.3 %, as has been previously observed for comparisons of related but distinct bacterial genera. The whole-genome phylogeny was reconstructed using PhyloPhlAn 3.0 based on an optimized subset of conserved universal proteins, the results of AAI and percentage of conserved proteins (POCP) analyses indicated that these phylogenetically distinct taxa may be assigned to six novel genera, namely Actinacidiphila gen. nov., Mangrovactinospora gen. nov., Peterkaempfera gen. nov., Phaeacidiphilus gen. nov., Streptantibioticus gen. nov. and Wenjunlia gen. nov

    Practical Application of Methanol-Mediated Mutualistic Symbiosis between Methylobacterium Species and a Roof Greening Moss, Racomitrium japonicum

    Get PDF
    Bryophytes, or mosses, are considered the most maintenance-free materials for roof greening. Racomitrium species are most often used due to their high tolerance to desiccation. Because they grow slowly, a technology for forcing their growth is desired. We succeeded in the efficient production of R. japonicum in liquid culture. The structure of the microbial community is crucial to stabilize the culture. A culture-independent technique revealed that the cultures contain methylotrophic bacteria. Using yeast cells that fluoresce in the presence of methanol, methanol emission from the moss was confirmed, suggesting that it is an important carbon and energy source for the bacteria. We isolated Methylobacterium species from the liquid culture and studied their characteristics. The isolates were able to strongly promote the growth of some mosses including R. japonicum and seed plants, but the plant-microbe combination was important, since growth promotion was not uniform across species. One of the isolates, strain 22A, was cultivated with R. japonicum in liquid culture and in a field experiment, resulting in strong growth promotion. Mutualistic symbiosis can thus be utilized for industrial moss production

    Impact of plants on the diversity and activity of methylotrophs in soil

    Get PDF
    Background Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. Results Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. Conclusion In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle
    corecore