6,327 research outputs found

    Genetic algorithms: a pragmatic, non-parametric approach to exploratory analysis of questionnaires in educational research

    Get PDF
    Data from a survey to determine student attitudes to their courses are used as an example to show how genetic algorithms can be used in the analysis of questionnaire data. Genetic algorithms provide a means of generating logical rules which predict one variable in a data set by relating it to others. This paper explains the principle underlying genetic algorithms and gives a non-mathematical description of the means by which rules are generated. A commercially available computer program is used to apply genetic algorithms to the survey data. The results are discussed

    Dissecting the spiral galaxy M83: mid-infrared emission and comparison with other tracers of star formation

    Full text link
    We present a detailed mid-infrared study of the nearby, face-on spiral galaxy M83 based on ISOCAM data. M83 is a unique case study, since a wide variety of MIR broad-band filters as well as spectra, covering the wavelength range of 4 to 18\mu m, were observed and are presented here. Emission maxima trace the nuclear and bulge area, star-formation regions at the end of the bar, as well as the inner spiral arms. The fainter outer spiral arms and interarm regions are also evident in the MIR map. Spectral imaging of the central 3'x3' (4 kpc x 4 kpc) field allows us to investigate five regions of different environments. The various MIR components (very small grains, polycyclic aromatic hydrocarbon (PAH) molecules, ionic lines) are analyzed for different regions throughout the galaxy. In the total 4\mu m to 18\mu m wavelength range, the PAHs dominate the luminosity, contributing between 60% in the nuclear and bulge regions and 90% in the less active, interarm regions. Throughout the galaxy, the underlying continuum emission from the small grains is always a smaller contribution in the total MIR wavelength regime, peaking in the nuclear and bulge components. The implications of using broad-band filters only to characterize the mid-infrared emission of galaxies, a commonly used ISOCAM observation mode, are discussed. We present the first quantitative analysis of new H-alpha and 6cm VLA+Effelsberg radio continuum maps of M83. The distribution of the MIR emission is compared with that of the CO, HI, R band, H-alpha and 6cm radio. A striking correlation is found between the intensities in the two mid-infrared filter bands and the 6cm radio continuum. To explain the tight mid-infrared-radio correlation we propose the anchoring of magnetic field lines in the photoionized shells of gas clouds.Comment: 22 pages, 15 figures. Accepted for publication in A&

    3-D resistivity forward modeling and inversion using conjugate gradients

    Get PDF
    We have developed rapid 3-D dc resistivity forward modeling and inversion algorithms that use conjugate gradient relaxation techniques. In the forward network modeling calculation, an incomplete Cholesky decomposition for preconditioning and sparse matrix routines combine to produce a fast and efficient algorithm (approximately 2 minutes CPU time on a Sun SPARC‐station 2 for 50 × 50 × 20 blocks). The side and bottom boundary conditions are scaled impedance conditions that take into account the local current flow at the boundaries as a result of any configuration of current sources. For the inversion, conjugate gradient relaxation is used to solve the maximum likelihood inverse equations. Since conjugate gradient techniques only require the results of the sensitivity matrix [tilde under A] or its transpose [tilde under A][superscript T] multiplying a vector, we are able to bypass the actual computation of the sensitivity matrix and the inversion of [tilde under A][superscript T] [tilde under A], thus greatly decreasing the time needed to do 3-D inversions. We demonstrate 3-D resistivity tomographic imaging using pole‐pole resistivity data collected during an experiment for a leakage monitoring system near evaporation ponds at the Mojave Generating Station in Laughlin, Nevada.United States. Environmental Protection Agency (grant #CR-821516

    Spacecraft instrument calibration and stability

    Get PDF
    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS)

    VoxNet: An interactive, rapidly-deployable acoustic monitoring platform

    Get PDF

    Moving academic conferences online: Aids and barriers to delegate participation

    Get PDF
    In-person academic conferences are important to disseminate research and provide networking opportunities. Whether academics attend in-person conferences is based on the cost, accessibility, and safety of the event. Therefore, in-person conferences are less accessible to academics and stakeholders that are unable to overcome some of these factors, which then act as a barrier to equal and inclusive participation. Additionally, the carbon footprint of conference travel is increasingly becoming a factor in deciding on whether to attend a conference. Online conferences may provide opportunities to mitigate these challenges. Here, we illustrate how a learned society can move their conference online. Then, comparing data acquired from the virtual conference and previous in-person conferences, we explore the aids and barriers influencing the decision of delegates to attend the meetings. Ultimately, moving meetings online aids delegate participation by removing concerns about travel, cost, and carbon emissions, but there remains a barrier to participation as online meetings are perceived as less effective for networking and social opportunities
    corecore