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3-D resistivity forward modeling and inversion
using conjugate gradients

Jie Zhang *, Randall L. Mackie *, and Theodore R. Madden*

ABSTRACT

We have developed rapid 3-D do resistivity forward
modeling and inversion algorithms that use conjugate
gradient relaxation techniques. In the forward network
modeling calculation, an incomplete Cholesky decom-
position for preconditioning and sparse matrix rou-
tines combine to produce a fast and efficient algorithm
(approximately 2 minutes CPU time on a Sun SPARC-
station 2 for 50 x 50 x 20 blocks). The side and bottom
boundary conditions are scaled impedance conditions
that take into account the local current flow at the
boundaries as a result of any configuration of current
sources.

For the inversion, conjugate gradient relaxation is
used to solve the maximum likelihood inverse equa-
tions. Since conjugate gradient techniques only re-
quire the results of the sensitivity matrix A or its
transpose A T multiplying a vector, we are able to
bypass the actual computation of the sensitivity matrix
and the inversion of ATA, thus greatly decreasing the
time needed to do 3-D inversions.

We demonstrate 3-D resistivity tomographic imag-
ing using pole-pole resistivity data collected during an
experiment for a leakage monitoring system near evap-
oration ponds at the Mojave Generating Station in
Laughlin, Nevada.

INTRODUCTION

The earth is inherently three-dimensional. The interpreta-
tion of resistivity data, however, is usually done assuming a
1-D or 2-D geometry, although 3-D interpretation is essential
in many applications such as mineral and geothermal explo-
ration and environmental surveys for hydrogeologic investi-
gations. However, the full use of resistivity techniques in

geophysics has been limited by the inability to accurately
calculate anomalies as a result of 3-D features and to
efficiently compute an inversion for a large 3-D model. In the
recent past, substantial advances have been made in numer-
ical modeling techniques for 2-D geologic structures. The
techniques for solving a 2-D forward modeling problem
include the integral equation method (Hohmann, 1975), the
network method (Pelton et al., 1978; Tripp et al., 1984), the
finite-element method (Coggon, 1971) and the finite-differ-
ence method (Mufti, 1976). Least-squares techniques have
been successful in the applications to 2-D inversion prob-
lems (Pelton et al., 1978; Tripp et al., 1984; Shima, 1990).
However, there are only a few reported studies of 3-D
resistivity forward modeling and inversions. Dey and Mor-
rison (1979) developed a 3-D forward modeling routine using
finite-difference. Petrick et al. (1981) outlined a 3-D alpha-
center method that involves solving for image sources rep-
resenting conductivity distributions and applying a least-
squares algorithm for the inversion. Park and Van (1991)
developed a 3-D inversion procedure using maximum likeli-
hood inverse theory and Dey and Morrison's (1979) finite-
difference forward modeling code. However, their inver-
sions were limited to small models because standard matrix
inversion techniques were used to solve the maximum
likelihood inverse equations. Li and Oldenburg (1994) also
used Dey and Morrison's (1979) 3-D finite-difference algo-
rithm in an approximate inverse procedure without calculat-
ing the 3-D sensitivity matrix and its inversion. They per-
formed 1-D linear inversions in the wavenumber domain and
obtained an approximate 3-D solution by Fourier transform-
ing the 1-D inversion results. Ellis and Oldenburg (1994)
presented another approach for solving the pole-pole 3-D
resistivity inverse problem which used the conjugate gradi-
ent method to minimize a nonlinear objective function and
applied the adjoint equation to compute the gradient of the
objective function.

In this paper, we use a transmission-network analogy
(Madden and Swift, 1969; Swift, 1971) for the 3-D forward
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modeling problem, and we apply conjugate gradient relax-
ation to solve both the forward and inverse problems. For
the forward problem calculation, conjugate gradient relax-
ation is used to obtain an accurate solution of the discretized
network equations for dc current flow in the earth. For the
inversion, conjugate gradient relaxation is used both for the
forward modeling step and for finding a solution to the
linearized equations of the maximum likelihood inverse
problem. We also recognize that the use of conjugate gradi-
ent relaxation in the inversion allows us to bypass the actual
computation of the sensitivity matrix. Our fundamental goal
is to provide a compact 3-D resistivity code that works
quickly and efficiently on a modem computer workstation.
Results with both synthetic and real data will be presented.

FORWARD MODELING FORMULATION AND BOUNDARY
CONDITIONS

The forward modeling routine will affect both the effi-
ciency and accuracy of the 3-D inversion algorithm. There-
fore, we explore the details of several different numerical
techniques for solving the forward problem and also inves-
tigate the effects of the boundary conditions. The equations
that govern the dc resistivity response are

Vv(x, y, z) = —p(x, y, z)J(x, y, z), (1)

V • J(x, y, z) = i(x, y, z), (2)

where v(x, y, z) is the electric potential, J(x, y, z) is the
current density, i(x, y, z) is the current source distribution,
and p(x, y, z) is the 3-D resistivity distribution.

Equations (1) and (2) are seen to be the transmission
network equations (Madden and Swift, 1969; Swift, 1971).
For a discretized earth, they can be approximated by a
network of lumped impedances where the impedances are
proportional to the model resistivities. Figure 1 shows a
portion of the discretized 3-D resistivity distribution and its

network analog. We define voltage nodes at the top center of
each medium block. With this geometry, the impedance
elements Rx , Ry , and RZ can be given by

1	 1

Rx	Ox(i)p(i, j, k)	 x(i — 1)p(i — 1, j, k)

oy(J)&(k) +	 oy(J)zz(k)

xx(i)p(i, j, k — 1) Ax(i — 1)p(i — 1, j, k — 1)'

dy(J)Az(k — 1)	 tly(j)dz(k — 1)
(3a)

1

Ry Ay(J)p(i, j, k) Dy(J — 1 )p(i, j — 1, k)

Ax(i)Oz(k)	 &x(i)Az(k)

1

+ Dy(j)p(i, J, k — 1) Dy(j — 1 )p(i, j — 1, k — 1)'

lix(i)t^z(k — 1)	 i.x(i)&z(k — 1)
(3b)

1	 Ox(i)y(J)

RZ &(k)p(i, j, k)
(3c)

where Ox(i), Ay(j), and Az(k) are the grid spacing in each
dimension for block (i, j, k), and p(i, j, k) is the resistivity
of block (i, j, k). On the right side in Figure 1, a lumped
network of 2 x 3 x 2 grids is illustrated, which consists of
network nodes, boundary nodes, and impedance branches
between network nodes. Current sources can be placed at
any network nodes, and the voltage is defined at all nodes.
Kirchhoff's current law applied to the network results in a
linear set of equations that can be written in matrix form as

FIG. 1. A portion of the discretized 3-D resistivity distribution and the resultant lumped network. RX , Ry , and
RZ represent network impedances.
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Kv=s, (4)

where the coefficient matrix K is sparse, symmetric, and
positive-definite; v is the voltage vector, and s is the current
source vector. For a model with blocks of nx, ny, and nz in
three dimensions, the matrix K has a size (nx x ny x nz) by
(nx x ny x nz), and v and s have length nx x ny x nz.

Boundary conditions

We apply a homogeneous Neumann condition (avlaz = 0)
at the earth-air interface and a scaled impedance boundary
condition on the sides and bottom that is a modification of
Dey and Morrison's (1979) boundary condition. In Figure 2,
we illustrate a plan view of the modeling accuracy on the
ground surface for four different boundary conditions that
we describe below. A single pole or a dipole source with

pole-pole interval 50 m on the surface is assumed. We plot
the percentage difference using the formula: 100 X (vQ —

V num )Iva, where va is the analytical solution and V num is the
numerical solution. Two models are tested: (1) homogeneous
half-space (p = 500 ft • m) and (2) two-layer media (p l = 500
fZ • m, P 2 = 200 SZ - m, It = 30 m). The models (20 x 30 x
15) are gridded with equal spacing 10 m in all three dimen-
sions.

Most of the early work in resistivity modeling used
Dirichlet type of boundary conditions, where v = 0 is set at
all boundaries except for the free surface (Mufti, 1976; Tripp
et al., 1984). Using this boundary condition, one has to
establish a large coarse grid system near the boundaries
simply for maintaining accuracy in a small central area.
Additional computer storage is then required, and the num-
ber of grids that can be modeled is limited. The error for an
equally gridded model, as shown in Figure 2, can be tremen-

FIG. 2. Forward modeling accuracy in percentage for four different boundary conditions relative to the analytical solutions: (a)
pole source, homogeneous resistivity structure, p = 50011 • m; (b) dipole source, two-layer resistivity structure, P1 = 500 0 • m,
h = 30 m, P2 = 200 St • m. Equal grid spacing of 10 m was used in these calculations.
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dously large because of this boundary condition, and is
mostly over 50% on the surface. Another possible boundary
condition is to use an analytical solution of the homogeneous
medium for the boundary nodes. However, the error for this
boundary condition can also be very large if the medium is
inhomogeneous and a solution for a homogeneous medium is
applied. Consequently, Dey and Morrison (1979) proposed a
mixed boundary condition, assuming that the total potential
at large distances from the geometrical surface center on the
ground has an asymptotic behavior 1/r, giving,

av v
— + - cos 9 = 0,	 (5)
an r

where 0 is the angle between the radial distance from the
geometrical surface center and the outward normal spatial
coordinate n on the boundaries. This condition still requires
coarse grids near the boundaries, though the accuracy is
increased somewhat. However, in solving the inverse prob-
lem using conjugate gradient relaxation, we need to be able
to compute the forward problem with sources distributed at
all the receivers simultaneously and with sources distributed
throughout the volume simultaneously (Mackie and Madden,
1993). Therefore, we have modified Dey and Morrison's
(1979) boundary condition to account for many sources and
exact source locations by considering the local current flow
at the boundary nodes as a result of each source. If there are
ns sources with sizes I, (i = 1, 2, ... , ns) where the
potential at a bottom or side boundary node N is V N (VN =
^k s 1 vp ) ) and the potential at the next inner boundary node
N - 1 is VN_1 (vN-1 = Xks 1 v k^ 1), then we have the
following voltage relationship based on Dey and Morrison
(1979) because of the ith pole source,

(_)  =	 -(_) (	 dz cos 91
vN 	vN- 1 1	 i = 1, 2, ... ns,	 (6)

r;	

)
where r 1 is the distance between the boundary node and the
source i, O is the angle between the radial distance from the
source i and the outward normal spatial coordinate n on the
boundaries, Oz is the grid spacing at the bottom boundary
and should be replaced by Ax or Dy if the side boundaries
are considered. For a homogeneous medium, equation (6)
gives an exact boundary relation for one current source if r ;

starts from the location of source i rather than the surface
center. We make an assumption that the v/I ratio (voltage/
source current) normalized by the distance r is constant for
each source:

	r1 vN- 1 r2 vN_ 1	 rns vN_)1•
	=p.	 (7)
	11	 I2	 Ins

Relationship (7) is exact for a homogeneous medium, and
gives an approximation for an inhomogeneous medium. If all
the sources are included simultaneously, then by linearity
the constant p can be written as

VN-1
P =	 (8)

ns 

k=1 (

Ik

rk)

We recognize that the component of the voltage at the node
N - 1 caused by the ith source from equations (7) and (8) is
therefore given by

i	VN- 1
vN 1 =	 (9)

\Ii/ k=1 \ rk/

Substituting this into equation (6) and using V N = _ks 1 v ,k)

and VN_1 = Ek = 1 v 1 leads to the boundary condition
that we will apply to a general receiver-source problem,

ns 	cos 9 1

VN=VN-1 1-Oz 2	 L	 (10)
i = 1 r/ ns 

Ii k=1 (

Ik

rk)

To implement the boundary condition [equation (10)] in the
network system, we simply scale the near-boundary imped-
ance to control the current across the boundary nodes by the
following factor,

ns cos O (11)
i = 1 ri ns Ik

Il k l rk

As shown in Figure 2, for a pole or dipole source, the
modified boundary condition [equation (10)] gives small
errors everywhere on the surface for homogeneous or two-
layer model while the mixed boundary condition in Dey and
Morrison (1979) produces a small error only in the central
area. For the dipole case, it also shows relatively large errors
in the area at equal or nearly equal distances to both poles.
This is because the voltage in this area is small, and the error
in percentage is therefore quite sensitive and large when the
boundary condition is not properly imposed.

Forward modeling solution

In this study, we apply two different techniques to solve
the forward matrix problem, equation (4), i.e., the Greenfield
algorithm (Swift, 1971) and the conjugate gradient technique
(Hestenes and Stiefel, 1952). The Greenfield algorithm is
essentially an efficient algorithm for block tridiagonal matri-
ces (Golub and Van Loan, 1990). This algorithm reduces a
large matrix problem into many small submatrix problems.
In our implementation of the Greenfield algorithm, the
submatrix has a dimension of nx x nz. Although the
Greenfield algorithm is slower than the conjugate gradient
approach, it gives the exact solution of the difference equa-
tions whereas the conjugate gradient method gives only an
approximate solution. Thus, the Greenfield algorithm is
useful for the purpose of checking the modeling accuracy
because of boundary conditions and the use of the conjugate
gradient method. The numerical calculation shown in
Figure 2 used the Greenfield algorithm.

When using the conjugate gradient approach, we need to
store only the nonzero elements in the upper triangular part
of the symmetric K matrix. In the 3-D forward problem, the
number of nonzero elements is 7(nx x ny x nz) - 2 x nx
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x ny - 2 x ny x nz - 2 x nx x nz, but we need to store
only 4(nx x ny x nz) - nx x ny - ny x nz - nx x nz
(diagonal + upper triangular) because of symmetry. To
represent the sparse matrix K, we use the row-indexed
sparse storage mode (Press et al., 1992), which requires
storage of only about two times the number of nonzero
matrix elements. Other methods can require as much as
three to five times. Efficient algorithms are used to compute
K multiplying a vector, which is the essential calculation
required in the conjugate gradient techniques.

We have also developed efficient algorithms for doing
incomplete Cholesky preconditioning that take into account
the sparsity of the K matrix. Numerical and theoretical
studies indicate that the conjugate gradient techniques work
best on matrices that are either well conditioned or just have
only a few distinct eigenvalues (Golub and Van Loan, 1990).
For linear systems of equations, one can precondition the
system using methods such as incomplete Cholesky decom-
position (Kershaw, 1978; Papadrakakis and Dracopoulos,
1991), incomplete block decomposition, domain decomposi-
tion, or polynomial preconditioners [for general review, see
Axelsson (1985)]. For the 3-D resistivity problem, we use the
incomplete Cholesky factorization based on rejection by
position, forcing the preconditioning matrix to have the same
sparsity as the forward modeling matrix. Figure 3 shows a
comparison of the computation speed for doing one forward
modeling problem using the conjugate gradient relaxation
with the incomplete Cholesky preconditioning (open circle)
versus the Greenfield algorithm (triangle). The grid length
refers to the number of grids in each dimension for a cube

400

0

0

0

0

0

0
0

o 0
• A®490O° °°°

10	 20	 30	 40	 50

Grid Length (points)

A — Greenfield algorithm

0 — Conjugate gradients with
incomplete Cholesky preconditioning

FIG. 3. Computation speed comparison for one forward
modeling run using the conjugate *radient techniques with
incomplete Cholesky preconditioning (open circle) versus
the Greenfield algorithm (triangle). The grid length refers to the
number of grids in each dimension for cube models. These
calculations were conducted on a Sun SPARCstation 2.

model. These tests were conducted on a Sun SPARCstation
2. We used an accuracy criterion of IOv/v < le for these
tests. The medium resistivities were completely inhomoge-
neous and were defined by the function, p(i, j, k) = 100 x
i + 10 x j + 1 x k, so that the speed estimates using the
conjugate gradients should represent a lower bound.

MAXIMUM LIKELIHOOD INVERSE PROCEDURE

We apply the maximum likelihood inverse theory devel-
oped by Tarantola and Valette (1982) to our 3-D resistivity
inversions. In general, geophysical inverse problems are
nonunique. The maximum likelihood inverse is one method
to obtain a solution to a nonunique inverse problem. This
method provides the best fit to the data relative to the a priori
information. The mathematical form of the maximum likeli-
hood inverse that we use is from Mackie et al. (1988) and
Madden (1990), and it closely follows the work of Tarantola
and Valette (1982) and Tarantola (1987):

(AkRdd4k + R, )Omk = A/Rdd(d - G(mk))

+ Rmm(m0 - mk)	 (12)

where,

A = sensitivity matrix
d = observed data vector
m = model vector
G = forward modeling operator

Rdd = data covariance matrix
'mm = model covariance matrix

mo = a priori model
Lmk = model changes for inversion iteration k.

For one source, m receivers and n resistivity blocks, the
sensitivity matrix A is defined by A l = aQ i /app; i = 1,
2, ... , m; j = 1, 2, ... , n, where Q, is the measurement
at the ith receiver and p is the intrinsic resistivity in the jth
model block. For a 3-D problem with many sources, how-
ever, the matrix A can be very large and have a size equal to
(# of sources) x (# of receivers) x (# of medium blocks).
Nevertheless, using conjugate gradient relaxation tech-
niques to solve the maximum likelihood equations allows us
to bypass the actual computation of the sensitivity matrix A,
or the inversion of the A TA term. Indeed, we only need the
results of matrix A multiplying an arbitrary vector x and A T

multiplying an arbitrary vector y. As shown in the algorithm
given in the Appendix, these vectors are related to the model
residuals or the search directions in the conjugate gradient
relaxation and are updated at each relaxation iteration.

For the 3-D magnetotelluric (MT) inversion problem,
Mackie and Madden (1993) showed that A multiplying a
vector could be computed with one forward modeling run
with scaled sources distributed throughout the volume.
Likewise, they showed that AT multiplying a vector could be
computed with another forward modeling run except with
scaled sources at the surface. Thus, for each relaxation
iteration, only two forward problems are required to com-
pute an update of Omk . The total number of forward
problems per inversion iteration is determined by the num-
ber of relaxation iterations carried out at each inversion
iteration. Thus, each inversion iteration required only
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2 x nrel forward problems, which could be substantially
less than doing inversion by traditional methods.

We recognize that we can also compute A and A T multi-
plying arbitrary vectors without forming A by using another
approach based on rdciprocity (Rodi, 1976). There may be
situations where this approach may require fewer forward
problems than the method in Mackie and Madden (1993).
This will be detailed shortly.

To thoroughly investigate each method (Mackie and
Madden, 1993; Rodi, 1976), we present two equations for
calculating Ax and A Ty that explicitly contain the forward
problems required by both Rodi (1976) and Mackie and
Madden (1993). In our implementation of the maximum
likelihood inverse, we use logarithmic parameterization of
the data and model parameters. In all the following equa-
tions, however, we keep the sensitivity terms in the original
definition, so that the physical meaning can be easily under-
stood. To better illustrate the methods, the following algo-
rithm is developed for a 3-D problem with one source, m
receivers and n resistivity blocks. Problems with more
sources can be easily modified.

A potential measurement Q, can be defined as

Q ; = a tv,	 (13)

where, i = 1, 2, ... , m is the receiver index, v is the
voltage vector containing voltage values at all network nodes
and for a1T = (0, ... , 0, 1, 0, ... , 0), 1 is the ith
component in the vector a,T , which corresponds to the
receiver site i.

The partial derivative with respect to p (medium resistiv-
ity) of equation (4) is given by

aK	 av
— v+K —=0.	 (14)
ap	 ap

Substituting equation (13) into (14), we get the sensitivity
term,

aapt = –aTK 1 
ilK

 v.	 (15)

The matrix Alap contains only a few terms, which are
those associated with the medium p in the forward matrix,
and it can be analytically derived. The sensitivity matrix A
multiplying a vector x has the form

aQ1 aQl aQl
X1 + — X2 + • • • + — xn

aPl iP2 aPn

aQ2 aQ2 aQ2

Ax =
-x1 +
aPl

x2 +	 ..
iP2

+	 xn
aPn

iQm aQ m iQm
xl + x2+•••+ xn

aPi iP2 aPn

aT1

az	 1( aK	 aK	 aK
_ — K xl —v+x2 — v+ +xn —v 1 .

"	 ap1	 ip2	 apn

amm

(16)

Similarly, the transposed sensitivity matrix multiplying a
vector y is given by,

aK
apl v

aK
— v

ATy = – (Ylai +Y2a2 + ... +Ymam)K 1 ape

aK
— v
aPn

(17)

Note that the matrix iK/ap ; in these equations contains
only a few nonzero terms with algebraic expressions and can
be calculated exactly. There are two possible ways to
compute Ax and ATy in equations (16) and (17). First, one
can define a vector u for computing equation (16) such that,

1(

=
	 aK	 aK	 aK

uK - xl — v+x2 — v+ ...+x 	 v /),
api	 iP2	 aPn

(18)

and another vector s for computing equation (17) such that

s T = (Ylal +Y2a2 + ... +Ymam)K -1 .	 ( 19)

Equation (18) can then be rewritten as

( aK	 aK	 aK
Ku= xl — v +x2 — v+•• +xn — v

apt	 iP2	 aPn

(20)

To calculate u, we simply do one forward problem with a
source vector (x i aK/ap 1 V + X 2 iK/ap 2 V + ••• +

xn aK/ap„ v), in which x l (i = 1, 2, ... , n) is the ith
element of the given vector x. The source vector represents
the sources distributed throughout the model volume. Like-
wise, because K is symmetric, equation (19) can be rewritten
as

	

Ks = (Ylai +Y2a2 + ... +Yoram)•	 (21)

The term (y lal + y2a2 + • • • + ym am ) represents
sources distributed at all receiver sites with source size y at
receiver i. By doing one forward problem according to
equation (21), we can obtain the results of ATy• In these two
forward problem equations (20) and (21), however, the
source sizes are scaled by the vector components of x and y.
As mentioned earlier, these vectors need to be updated after
each relaxation iteration. Therefore, the total number of
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forward problems per inversion iteration by this method is
2 x nrel.

The second approach is to solve u T = a,TK -1 , i = 1,
2, ... , m, which because of symmetry is equivalent to
solving Ku = a,, i = 1, 2, ... , m (Rodi, 1976). These are
needed by both equations (16) and (17). This suggests that
we need to do m (# of receivers) forward problems with a
unit source at one receiver site each time. This idea is similar
to Rodi's (1976) algorithm for setting up a sensitivity matrix
for the MT problem. However, we bypass dealing with each
sensitivity term and directly compute the results of the
sensitivity matrix or its transpose multiplying a vector as
needed in the conjugate gradient relaxation techniques.
Once these calculations are done, then each relaxation
iteration requires only updating the appropriate vectors, so
no further forward problems are necessary. In essence, since
the resistivity problem involves point current sources, we
see that by doing forward problems with a current source at
each receiver, we have effectively generated the numerical
Green's functions.

For each inversion iteration, therefore, we see that when
using Mackie and Madden's method (1993) 2 + 2 x nrel
forward problems are required including two forward prob-
lems needed to update the b vector before the start of the
relaxation loop (nrel is the number of relaxation steps in one
inversion iteration): Using the approach based on Rodi
(1976), one would need to do 1 + m forward problems per
inversion iteration (m is the number of receivers). The
difference of total computation time between the two meth-
ods mostly depends on the number of forward problems
required in the inversion procedure. Figure 4 illustrates the
difference between the two approaches. For example, with
one source and 12 receivers in the field, and three relaxation
steps per inversion iteration, this means, by Rodi (1976), 1 +
12 = 13 forward problems for one inversion iteration; by
Mackie and Madden (1993), 2 + 2 x 3 = 8 forward problems
for one inversion iteration.

However, if we want to take 10 relaxation steps in one
inversion iteration for solving the same problem, by Rodi
(1976), 1 + 12 = 13 forward problems for one inversion
iteration; by Mackie and Madden (1993), 2 + 2 x 10 = 22
forward problems for one inversion iteration.

There is yet an additional way to compute the sensitivity
terms. For a network formulation, we can use the Cohn's
sensitivity theorem (Tripp et al., 1984), which is efficient
when reciprocity is applied. Tripp et al. (1984) solved the 2-D
resistivity inverse problem using this approach to explicitly
construct the sensitivity matrix. However, Cohn's sensitiv-
ity theorem deals with the local current across each network
node, so there is a lot of overhead associated with keeping
track of the current values across each node. Nevertheless,
we have implemented Cohn's sensitivity theorem to provide
a cross-check on the other computations.

Figure 5 shows the results of the sensitivity matrix multi-
plying a unit vector by using three different methods: Cohn's
sensitivity theorem (Tripp et al., 1984), the method based on
Rodi (1976), and Mackie and Madden's (1993) method. The
sensitivity matrix multiplying an unit vector gives the sum-
mation of the partial derivatives of each receiver with
respect to all medium parameters. This can be understood
from equation (16). Clearly, the results from all three meth-

ods are quite comparable to one another, and the differences
are minor. The results from Mackie and Madden's (1993)
approach and the approach based on Rodi (1976) are almost
identical.

Results for synthetic data

Three-dimensional resistivity inversion is very nonunique
because there are so many model parameters compared to
data points. It is necessary, therefore, to provide constraints
to the inversion. Constraints can be applied through the
inverse of the model covariance matrix, Rm,;. This matrix is
generated prior to the inversion and can be used to weight
various model parameters. The model can be smoothed by
using off-diagonal terms that couple adjacent parameters.
Likewise, the model covariance can be used to correlate
model parameters in some predetermined manner, to force
certain parameters to have more/less freedom to change

a)
•

0— Mackie and Madden (1993)

• — Rodi (1976)	 0•
0•	 •

• O
0

• e
11	 13	 15	 17	 19	 21

Grid Length (points)

0
0— Mackie and Madden (1993)

•• — Rodi (1976)

•
O •

O •

0 •

11	 13	 15	 17	 19	 21

Grid Length (points)

FIG. 4. Comparison of computation speed for one inversion
iteration with different relaxation steps by using Mackie and
Madden's (1993) method and another approach based on
Rodi (1976). The grid length refers to the number of grids in
each dimension for cube models. These calculations were
conducted on a Sun SPARCstation 2.
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during the inversion, or to apply a filter other than near-
neighbor smoothing. In our inversion, we also add a variable
damping term to the left-hand side of equation (12) to
stabilize the inversion in the beginning, and we tie it to the
error in the right-hand side so that as the error decreases, so
does the added damping. The damping term a is a X (1/.:r)
x (right-hand side error), where a is an empirical scaling
parameter usually on the order 0.1 to 1.0, and the right-hand
side is defined as,

nmod

b(i)b(i)
1 = 1

x 100,	 (22)
nmod

where b(i) is the right-hand side vector in equation (12). The
damping term reduces the influence of the small eigenvalues
in the early stages of the inversion, then allows them to

become more influential at the latter stages. In other words,
the use of this damping term maintains a stable convergence
rate in the maximum likelihood inverse procedure.

Our numerical simulations have shown an unfortunate
result of the nonuniqueness of the resistivity problem and
the large sensitivity of the near-electrode model blocks that
can duplicate the effects of substantial changes deeper in the
model. That is, without additional constraints the inversion
tends to make large model resistivity changes in the near-
surface layers, and especially in the near-electrode model
blocks. This is understandable because a check of the
sensitivity terms reveals that the near-electrode model
blocks normally have the largest sensitivity. After testing
many different inversion constraints, we have settled on the
following steps as a reasonable approach: (1) we set the
starting resistivity of the shallow layers to an average value
determined by the nearest source-receiver combinations, (2)

FIG. 5. Results of sensitivity matrix multiplying a unit vector (in natural logarithm) by using three different approaches, Cohn's
sensitivity theorem, Mackie and Madden's (1993) approach, and another approach based on Rodi (1976). The model contains
a low resistivity zone.
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the model covariance is adjusted so that the upper several
layers are weighted less than the bottom layers (this means
that initially large resistivity changes are not allowed in the
shallow structure), and (3) near-neighbor smoothing is also
applied. With these constraints, about 10-15 inversion iter-
ations are required to fit the data; however, we obtain much
more realistic results than inversions without these con-
straints.

To demonstrate our 3-D resistivity inversion, we show the
results for a pole-pole array with a grid of 5 x 5 electrodes on
the surface and five electrodes in a borehole at one corner
(see Figure 6a). The model contains a conductive zone with
a resistivity value of 10.0 (fl • m) at a depth of 50 m in the
background of 100.0 (l • m). The model size is 50 x 50 x 20
with an equal spacing of 6.25 m in all three dimensions. In
this numerical experiment, each electrode is used as a
transmitter and also as a receiver. Each time one pole
transmits current, voltage measurements are taken at all the

other poles. Therefore, there are 870 readings that are taken
as the data input in the inversion. Figure 6b shows the
anomaly sensitivity in percentage for two different sources
(circled in Figure 6a): one in borehole, the other on surface.
To understand numerical modeling accuracy, noise-free syn-
thetic data are applied.

To calculate synthetic data for M poles, one needs to do M
forward problems with a source at each pole. Therefore, we
can modify equations (16) and (17) to include M equations in
a column or a row for the Ax and A Ty calculations, where
x = (x 1 , x2, ... x,,) and Y = (y l) , YJ1) ... yD), YJ2),
Y z) ... y2) , ...... Yu), ... yl(M) 1)). The vector
x still has a dimension of n (the number of model parame-
ters), but the vector y now has a dimension of M(M — 1).
Therefore, the Ax and A Ty calculations become Ax = (f l ,

fM ) T and ATy = (gl + g2 + • • • + gM), where f,
and g1 (i = 1, 2, ... , M) are given by equations (16) and
(17), respectively.

FIG. 6. (a) Cross-section (left) and plan view (right) of the test model. Pole-pole geometry is applied for the numerical test; (b)
data sensitivity in percentage because of the conductive zone: one source in borehole (left), the other on surface (right) (circled
in Figure 6a).
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For a pole-pole problem, since each pole is used both as a
receiver and a transmitter and since reciprocity is automat-
ically applied in the field, the results of a,TK -1 as required in
equations (16) and (17) are actually obtained in the initial
forward modeling step. Therefore, for this pole-pole prob-
lem, we prefer the inversion approach based on Rodi (1976),
since no additional forward problems are required for doing
the inversion after the initial forward modeling step is
completed. For a model size of 50 x 50 x 20 (nx, ny, nz)
with 30 poles (870 data readings), one inversion iteration
with 10 relaxation steps takes 65 minutes (CPU time) on a
Sun SPARCstation 2, and 24 minutes (CPU time) on a DEC
alpha workstation.

The conductive zone in Figure 6 comprises 16 x 16 x 5
blocks. For this conductive zone, the largest voltage changes
on the surface are about 10%. The lateral changes on the
surface are smooth, though some rapid changes occur near
the anomaly in the subsurface. This simply suggests that we
are not able to resolve the sharp features in the subsurface
with any number of receivers on the surface. However, if the
receiver spacing is too large, spatial aliasing may become a
problem. For this test, we used a grid of 5 x 5 surface poles
with a pole-pole spacing of 50 m, or 8 grids.

As mentioned earlier, a nonuniform weighting of the
model covariance is important to the success of resistivity
inversion. For this problem, we use a spatial weighting
matrix that contains layer weights varying from le -3 to le -5
for the shallow structures of the a priori model, and le -3 for
the deep layers, except near the poles in the borehole a larger
weighting of 1e 3 is uniformly applied. The starting model
was homogeneous, with a resistivity value of 89.5 fl • m,
which is the average apparent resistivity from the closest
pole-pole measurements. This gave an initial 93% rms data
fit error. After 10 iterations, the data error was reduced to
2.0%. We stop here for this noise-free synthetic test, be-
cause the error in the forward modeling is probably about 2.0
to 3.0%. The results are shown in Figure 7. Clearly, the

sharp features of the conductive anomaly, such as the
corners, cannot be resolved, however, the location, the
average size, and the low-resistivity of the zone can be
determined from the inversion.

Analysis of field data

At the Mojave Generating Station in Laughlin, Nevada, a
resistivity monitoring system was installed beneath and
around one of the evaporation ponds operated by Southern
California Edison (Van, 1990; Van et al., 1991). This system
uses an 8 x 8 grid of electrodes, with an approximate spacing
of 90 m between electrodes. The purpose of this monitoring
system is to detect changes in resistivity that would be
associated with a leak of saline water from the pond. A
sketch map from Van (1990) is given in Figure 8 to show the
field layout.

A field test using a scaled down version of the resistivity
monitoring system to collect pole-pole data was performed
to demonstrate the effectiveness of using this system to detect
changes in resistivity associated with the influx of water into
the subsurface. The test consisted of a grid of 5 x 5
electrodes that had exactly the same distance scale and
surface pole-pole geometry as shown in Figure 6. A back-
ground resistivity survey performed prior to the placement

FIG. 7. Inversion results using 25 surface pole-pole data and
5 borehole pole-pole data.

FIG. 8. Map of the field experiment at the Mojave Generating
Station in Laughlin, Nevada (from Van, 1990). A grid of 5 x
5 poles using the same surface geometry shown in Figure 6a
was used to collect data, no borehole data available in this
case.
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of water was used as a comparison for the measurements
taken afterwards and to determine the resistivity structure of
the test area. Park and Van (1991) applied a 3-D inversion
algorithm to image the background resistivity structure.
However, as a result of the limitation in the algorithm, they
could invert only a small number of model parameters (7 x
7 x 5). In this paper, we present the results of modeling the
same data but with more efficient forward modeling and
inversion techniques and a mesh of 50 x 50 x 20 grids.
Another study using the same techniques to model the
resistivity monitoring data collected during the experiment is
currently being conducted and will be published separately.

Based on pole-pole apparent resistivity analyses, we find
that the resistivities in the shallow structures may vary
between 40012. - m and 600 fl - m. Considering the fact that
the apparent resistivities decrease with the increase of
pole-pole distance and the water table is at the depth of
about 45 m (Park and Van, 1991), we believe this estimate is
just a lower bound for the average values from the surface
down to 30 or 40 m. The rms data fit error for the inversion
starts at 76.0% and drops down to 4.2% after 12 iterations,
where we stop the inversion. This is because that analysis of
the raw data suggests that 85% of the data satisfies reciproc-
ity with error below 4%. As shown in Figure 9, from the

FIG. 9. Six layers of the tomographic imaging results for the baseline survey data collected in Laughlin, Nevada (in logarithm
of base 10).
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surface down to 25 m, no significant lateral changes are
resolved, but changes do occur vertically. In layer 2 (6.25 to
12.50 m), the resistivities vary between 600 and 80011 • m. In
layer 4 (18.75 to 25.00 m), however, resistivities vary be-
tween 1000 and 2000 fl • m. The 3-D variations in the
medium become apparent below the depth of 30 m. Between
layer 6 and 8, one can see that there is a high resistivity zone
(about 2300 SZ • m) near the center. Because the measure-
ments have low sensitivity to the medium near the bound-
aries at this depth and the a priori model had high resistivi-
ties for these layers, the inversion results show a pattern of
high resistivity near the boundaries. This is just an artifact
rather than true image. The depth of the water table remains
the same as what was given in the a priori model, but also
shows slight variations with a 3-D pattern. We have run
many inversions with different deep resistivity structures in
the a priori model each time, and we are always able to
resolve the same features.

The average resistivity in each layer shown in Figure 9 is
comparable to that obtained by Park and Van (1991). How-
ever, our results more clearly show the lateral and vertical
variations that are important for studying leakage monitoring
data collected afterwards.

SUMMARY

We have developed rapid 3-D dc resistivity modeling and
inversion algorithms using conjugate gradient relaxation
methods. We have also modified Dey and Morrison's (1979)
mixed boundary condition so that it gives more accurate
modeling results. Instead of using only one inversion ap-
proach, we have tried to obtain a more thorough understand-
ing of various techniques, and we have analyzed the advan-
tages and disadvantages of each technique for the 3-D
problem. The inversion algorithms are presented in a general
form, which allows us to use pole-pole data and/or dipole
data on the surface and/or in boreholes. We have suggested
constraints for minimizing the nonuniqueness of 3-D resis-
tivity inversions based on an appropriate weighting of the
model covariance. However, this procedure by no means
guarantees a unique solution or a "true" solution. One must
combine the results of other geophysical and geological
studies to make the interpretation whenever possible.

We believe that the investigation of subsurface features
using 3-D resistivity imaging techniques will become an
increasingly important exploration tool in the future.
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APPENDIX A

MAXIMUM LIKELIHOOD INVERSE PROCEDURE USING CONJUGATE GRADIENTS

To solve a nonlinear problem, one must update the model
in an iterative inversion by providing small local changes
Amk each time. The model after the kth step is given by

For k = 1 to max # inversion iterations
G(mk)
d - G(mk )

b = AT Rddl (d - G(mk)) + R, (m0 - mk)
= A Ty + Rmm(mo — mk) ,
where y = Radl (d - G(m k ))

Omk = 0; r0 = b; r l = b;
For i = 1 to max # relaxation steps (nrel)

T	 TRt — r, r^/rt-lrt-1
pi = r,-1 + I P1-i
Bpi = [AT Rid A + R, JP1

= ATY + RmmPi,
where y = Rddl Ax and x = p 1 .

ai = r,T 2r1_1 , p T Bp,
Omk = Omk + alPi
ri = ri-1 — aiBPi
end of loop on relaxation steps

mk+1 = mk + Omk
end loop on inversion iterations

We only need the results of A matrix multiplying an
arbitrary vector x and A T multiplying an arbitrary vector y in
this procedure rather than the sensitivity matrix A or its
inversion.

mk = mk + Omk . Using conjugate gradient relaxation tech-
niques to solve maximum likelihood inverse problem given by
equation (12) in the text, there are two loops involved.

NONLINEAR INVERSION
response of current model
data residuals
model residuals

one A Ty calculation

initialize conjugate gradients
RELAXATION SOLUTION

(Pi = ro ) update search direction

one Ax and one A Ty calculations
step length along search direction
update model perturbations
update residuals

update model parameters
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