114 research outputs found

    Damage analysis and seismic retrofitting of a continuous prestressed reinforced concrete bridge

    Get PDF
    SummaryThe seismic analysis and retrofit of prestressed reinforced concrete bridge is discussed by considering a real case of a viaduct still in use. The unique features of this bridge make this type of bridge particularly interesting, either structurally or architecturally. The paper begins with the analysis of certain particular structural deficiencies that emerged during the viaduct operation. The results of the analysis indicate that the structural performance can be enhanced by only modifying the support devices. The primary structural components are not required to be involved in the retrofitting process. Using the modern seismic code, the upgrading of the viaduct performance is obtained by replacing the old bearing devices on the piers and existing viscous dampers connected abutments to the deck with new modernised ones

    Experimental characterization of tensile strength of steel and fibre rovings also under environmental conditioning

    Get PDF
    Abstract The efficiency of the strengthening techniques by externally applied materials can be improved enhancing the debonding strength of the reinforcement from the support by the use of connectors (anchor spikes) consisting of unidirectional bundles of fibres embedded in concrete or masonry by means of organic or inorganic matrices. The use of connectors is suggested in various codes and guidelines of strengthening techniques by composite materials and provisions for their application are given, but currently there are no details for the qualification of the material. In order to investigate anchor spikes made of glass, basalt, aramid, carbon, PBO and steel, a large experimental campaign was carried out at the Materials and Structures Laboratory of the University of Sannio. The tests allowed to evaluate the mechanical characteristics (tensile strength, modulus of elasticity, deformation at the maximum load) of the anchor spikes constituted by only dry fibres, not impregnated, also as a result of environmental conditioning such as freezing and thawing, controlled humidity, alkaline and saline environment

    Exploring New Boundaries to Mitigate Structural Vibrations of Bridges in Seismic Regions: A Smart Passive Strategy

    Get PDF
    The combined use of two emerging technologies in the field of seismic engineering is investigated. The first is a semiactive control, to reduce smartly the effects induced by earthquakes on structures. The second is the Seismic Early Warning System which allows an estimate of the Peak Ground Accelerations of an incoming earthquake. This paper proposes the exploitation of this information in the framework of a semiactive control strategy based on the use of magnetorheological (MR) dampers. The main idea consists of changing the MR dampers' behaviour by the PGA estimated by the SEWS, to obtain the optimal seismic response of the structure. The control algorithm needed to drive the variable devices, according to the PGA estimate, is the core issue of the proposed strategy. It has been found that different characteristics of earthquakes that occur at different sites play a significant role in the definition of a control algorithm. Therefore, a design procedure for "regional" control algorithms has been performed. It is based on the results of several nonlinear dynamic simulations performed using natural earthquakes and on the use of a multicriteria decision-making procedure. The effectiveness of the proposed control strategy has been verified with reference to a highway bridge and to two specific worldwide seismic regions

    Exploring New Boundaries to Mitigate Structural Vibrations of Bridges in Seismic Regions: A Smart Passive Strategy

    Get PDF
    The combined use of two emerging technologies in the field of seismic engineering is investigated. The first is a semiactive control, to reduce smartly the effects induced by earthquakes on structures. The second is the Seismic Early Warning System which allows an estimate of the Peak Ground Accelerations of an incoming earthquake. This paper proposes the exploitation of this information in the framework of a semiactive control strategy based on the use of magnetorheological (MR) dampers. The main idea consists of changing the MR dampers' behaviour by the PGA estimated by the SEWS, to obtain the optimal seismic response of the structure. The control algorithm needed to drive the variable devices, according to the PGA estimate, is the core issue of the proposed strategy. It has been found that different characteristics of earthquakes that occur at different sites play a significant role in the definition of a control algorithm. Therefore, a design procedure for "regional" control algorithms has been performed. It is based on the results of several nonlinear dynamic simulations performed using natural earthquakes and on the use of a multicriteria decision-making procedure. The effectiveness of the proposed control strategy has been verified with reference to a highway bridge and to two specific worldwide seismic regions

    Engineering properties of geopolymer concrete: a review

    Get PDF
    Geopolymer concrete (GPC) could be a solution that uses a cementless binder and recycled materials for producing concrete, while reducing the carbon dioxide emission and the demand for raw materials. In addition to the environmental aspect, previous studies on GPC showed that it can achieve mechanical characteristics higher than those of ordinary Portland concrete (OPC) such as greater strength a few days after casting, and it can be suitable for structural applications. In this paper, the state-of-the-art review of GPC is presented through an extensive literature analysis to determine the most recent information regarding the engineering properties of geopolymer concrete and the critical issues that prevent its widespread use and to put forward suggestions for future research. In particular, the physical properties in both fresh and hardened states and the mechanical characteristics are investigated; the structural performance of geopolymer concrete elements is also outlined

    Search of somatic GATA4 and NKX2.5 gene mutations in sporadic septal heart defects

    Get PDF
    Q3Q1Reporte de caso306-309High prevalence of somatic mutations in the cardiac transcription factor genes NKX2.5 and GATA4 have been reported in the affected cardiovascular tissue of patients with isolated cardiac septal defects, suggesting a role of somatic mutations in the pathogenesis of these congenital heart defects (CHDs). However, all somatic mutations have been identified in DNA extracted from an archive of formalin-fixed cardiac tissues. In the present study, to address the hypothesis that somatic mutations are important in isolated CHDs, we analyzed the GATA4 and NKX2.5 genes in the fresh-frozen pathologic cardiac tissue specimen and corresponding non-diseased tissue obtained from a series of 62 CHD patients, including 35 patients with cardiac septal defects and 27 with other cardiac anomalies. We identified one variant and two common polymorphisms in the NKX2.5 gene, and six variants and two common polymorphisms in the GATA4 gene. All identified variants were seen in both the fresh-frozen pathologic cardiac tissue and the corresponding non-diseased tissue, which indicates that they all were constitutional variants. The present study has identified NKX2.5 and GATA4 constitutional variants in our CHD cohort, but was unable to replicate the previously published findings of high prevalence of somatically derived sequence mutations in patients with cardiac septal defects using fresh-frozen cardiac tissues rather than formalin-fixed tissues. (C) 2011 Elsevier Masson SAS. All rights reserved

    A Coherent Optical Fiber Link for Very Long Baseline Interferometry

    Get PDF
    We realize a phase-stabilised optical fiber backbone that connects the Italian National Metrology Institute with two radio telescopes over a 600 km baseline. This allows referencing of Very Long Baseline Interferometry (VLBI) facilities with the best atomic frequency standards available today and the implementation of a common-clock architecture, which we are now using to assess VLBI ultimate performances
    corecore