1,385 research outputs found

    Ultrasonic detection and identification of fabrication defects in composites

    Get PDF
    Methods for deliberate fabrication of porosity into carbon/epoxy composite panels and the influence of three-dimensional stitching on the detection of porosity were investigated. Two methods of introducing porosity were investigated. Porosity was simulated by inclusion of glass microspheres, and a more realistic form of porosity was introduced by using low pressure during consolidation. The panels were ultrasonically scanned and the frequency slope of the ultrasonic attenuation coefficient was used to evaluate the two forms of porosity. The influence of stitching on the detection of porosity was studied using panels which were resin transfer molded from stitched plies of knitted carbon fabric and epoxy resin

    Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    Get PDF
    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold

    Solar powered micrometeorite sensors using indoor ambient light for the International Space Station

    Get PDF
    Sensors for detecting micrometeorite impact locations and magnitudes as well as pressure vessel leaks have been under investigation for some time by the NASA Langley Research Center and other related entities. NASA has been investigating the use of the Distribution Impact Detection System (DIDS) for use on the International Space Station (ISS). However, the DIDS currently requires thionyl chloride lithium batteries which pose explosion and toxicity hazards, and replacing batteries is tedious and utilizes scarce man-hours. Carrying replacement batteries into space is also expensive. To hardwire new sensing devices into the ISS while in orbit would be time consuming. To overcome this problem, high efficiency GaAs solar cells have been studied under low light conditions comparable to those found inside the ISS. The cells were also studied for temperature dependence. Solar concentrators were investigated for possible use with ambient lighting. The power generated by the cells was stored in a large 300 F supercapacitor. A DC to DC boost regulator was modified to produce an output voltage of 3.55 V that is required by the DIDS. The successful operation of the DIDS with ambient light power, supercapacitor energy storage, and boost regulation was demonstrated

    Hydrological landscape settings of base-rich fen mires and fen meadows:an overview

    Get PDF
    Question: Why do similar fen meadow communities occur in different landscapes? How does the hydrological system sustain base-rich fen mires and fen meadows? Location: Interdunal wetlands and heathland pools in The Netherlands, percolation mires in Germany, Poland, and Siberia, and calcareous spring fens in the High Tatra, Slovakia. Methods: This review presents an overview of the hydrological conditions of fen mires and fen meadows that are highly valued in nature conservation due to their high biodiversity and the occurrence of many Red List species. Fen types covered in this review include: (1) small hydrological systems in young calcareous dune areas, and (2) small hydrological systems in decalcified old cover sand areas in The Netherlands; (3) large hydrological systems in river valleys in Central-Europe and western-Siberia, and (4) large hydrological systems of small calcareous spring fens with active precipitation of travertine in mountain areas of Slovakia. Results: Different landscape types can sustain similar nutrient poor and base-rich habitats required by endangered fen meadow species. The hydrological systems of these landscapes are very different in size, but their groundwater flow pattern is remarkably similar. Paleo-ecological research showed that travertine forming fen vegetation types persisted in German lowland percolation mires from 6000 to 3000 BP. Similar vegetation types can still be found in small mountain mires in the Slovak Republic. Small pools in such mires form a cascade of surface water bodies that stimulate travertine formation in various ways. Travertine deposition prevents acidification of the mire and sustains populations of basiphilous species that elsewhere in Europe are highly endangered. Conclusion: Very different hydrological landscape settings can maintain a regular flow of groundwater through the top soil generating similar base-rich site conditions. This is why some fen species occur in very different landscape types, ranging from mineral interdunal wetlands to mountain mires

    Impacts and Uncertainties of +2°C of Climate Change and Soil Degradation on European Crop Calorie Supply

    Get PDF
    Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from ten major crops and vulnerability to soil degradation in Europe using crop modelling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX) were used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South-Eastern Europe. The mean impacts range from +30 Gcal ha–1 in the north, through +25 and +20 Gcal ha–1 in Western and Eastern Europe, respectively, to +10 Gcal ha–1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high-input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 80 Gcal ha–1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North-Eastern Europe. Uncertainties due to future potentials for crop intensification are about two to fifty times higher than climate change impacts

    Verifiable soil organic carbon modelling to facilitate regional reporting of cropland carbon change: A test case in the Czech Republic

    Get PDF
    Regional monitoring, reporting and verification of soil organic carbon change occurring in managed cropland are indispensable to support carbon-related policies. Rapidly evolving gridded agronomic models can facilitate these efforts throughout Europe. However, their performance in modelling soil carbon dynamics at regional scale is yet unexplored. Importantly, as such models are often driven by large-scale inputs, they need to be benchmarked against field experiments. We elucidate the level of detail that needs to be incorporated in gridded models to robustly estimate regional soil carbon dynamics in managed cropland, testing the approach for regions in the Czech Republic. We first calibrated the biogeochemical Environmental Policy Integrated Climate (EPIC) model against long-term experiments. Subsequently, we examined the EPIC model within a top-down gridded modelling framework constructed for European agricultural soils from Europe-wide datasets and regional land-use statistics. We explored the top-down, as opposed to a bottom-up, modelling approach for reporting agronomically relevant and verifiable soil carbon dynamics. In comparison with a no-input baseline, the regional EPIC model suggested soil carbon changes (~0.1–0.5 Mg C ha−1 y−1) consistent with empirical-based studies for all studied agricultural practices. However, inaccurate soil information, crop management inputs, or inappropriate model calibration may undermine regional modelling of cropland management effect on carbon since each of the three components carry uncertainty (~0.5–1.5 Mg C ha−1 y−1) that is substantially larger than the actual effect of agricultural practices relative to the no-input baseline. Besides, inaccurate soil data obtained from the background datasets biased the simulated carbon trends compared to observations, thus hampering the model's verifiability at the locations of field experiments. Encouragingly, the top-down agricultural management derived from regional land-use statistics proved suitable for the estimation of soil carbon dynamics consistently with actual field practices. Despite sensitivity to biophysical parameters, we found a robust scalability of the soil organic carbon routine for various climatic regions and soil types represented in the Czech experiments. The model performed better than the tier 1 methodology of the Intergovernmental Panel on Climate Change, which indicates a great potential for improved carbon change modelling over larger political regions

    Extrapolation of the LTE data for regional prediction of crop production and agro-environmental impacts in the Czech Republic with the EPIC-based modelling system

    Get PDF
    The long-term crop trials (LTE) provide valuable insights into functioning of the crop systems under variety of crop management strategies. In particular, those field operations which in long run affect the soil organic carbon balance might be of an importance for the climate change impacts oriented research. Bonded strongly to the local site conditions, LTEs provide spatially limited information, not fully reflecting the needs of the large-scale inventories covering countries or big regions. Representing LTEs with a process-based model via locally calibrated model parameters and data, and subsequent upscaling of the model with regional data on climate, terrain, soil, and land use, provides a possible way for LTEs extrapolation to wider geographical domains. As a follow-up to the earlier work on formalising LTE records from several sites in Czechia with the EPIC model, the simulation infrastructure (EPIC-IIASA (CZ)) has been created for regional predictions of crop production and its agro-environmental impacts over the whole territory of Czech Republic (CZ). Conceptually, the EPIC-IIASA (CZ) has been designed based on the EPIC-IIASA global gridded crop modelling system. A set of 977 spatial simulation units (or typical fields, > 1 ha each), which represent a unique combination of an administrative unit (level LAU1), climate region, and soil region, has been compiled using CZ national data. Each simulation unit has been used for linking spatially explicit input data on i) climate, ii) site, iii) soil properties, and iv) crop management to the process-based model EPIC. As an output, various agro-environmental variables may be acquired and visualized geographically. Initially, the spatial infrastructure worked with fixed sowing and harvesting dates across all CZ regions. In order to get the full potential of the EPIC-IIASA (CZ), a calibration with regional planting scenarios was done. Agronomically relevant planting-harvesting windows scenarios were assessed based on the published data (MOCA report), this specifically for traditional production areas in CZ (CZ_R01: Maize growing; CZ_R02: Potato growing; CZ_R03: Cereal growing; CZ_R04: Forage growing; CZ_R05: Sugar beet growing). Since there was not any yield data available for the LAU1 level administrative regions, published LAU1 estimates of the potential yields were used for validation of the EPIC-IIASA (CZ) simulated rainfed and nutrient-unlimited yields. Both absolute simulated yields and the percentage of reported potential yields were displayed geographically and spatial pattern of the simulated values evaluated. Furthermore, longterm average and inter-annual variability of simulated yields were compared to the available statistical data at the NUTS3 administrative level. To date, calibration and validation of two crops, spring barley and winter wheat were successfully performed. Other crops will be calibrated in the next step, so that representative crop rotations could be constructed and used in EPIC-IIASA (CZ) setup to properly approximate the prevailing regional cropping systems in the simulations. Such a completely calibrated and validated crop modelling system could serve as a powerful tool for extrapolating impacts of different crop management strategies, well explored with LTEs, over the larger areas, and hence, provide valuable evidence-based inputs for decision-making support at regional and national levels in CZ

    Quantitative Proteomics Reveal an Altered Pattern of Protein Expression in Brain Tissue from Mice Lacking Gpr37 and Gpr37l1

    Get PDF
    GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue

    Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films

    Get PDF
    Correlated experimental and simulation studies on the modulation of Surface Plasmon Polaritons (SPP) in Au/VO2 bilayers are presented. The modification of the SPP wave vector by the thermallyinduced insulator-to-metal phase transition (IMT) in VO2 was investigated by measuring the optical reflectivity of the sample. Reflectivity changes are observed for VO2 when transitioning between the insulating and metallic states, enabling modulation of the SPP in the Au layer by the thermally induced IMT in the VO2 layer. Since the IMT can also be optically induced using ultrafast laser pulses, we postulate the viability of SPP ultrafast modulation for sensing or control. (C)2015 Optical Society of Americ
    corecore