46 research outputs found
Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity
The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion
Comparing Breast Cancer Multiparameter Tests in the OPTIMA Prelim Trial: No Test Is More Equal Than the Others
Background: Previous reports identifying discordance between multiparameter tests at the individual patient level have been largely attributed to methodological shortcomings of multiple in silico studies. Comparisons between tests, when performed using actual diagnostic assays, have been predicted to demonstrate high degrees of concordance. OPTIMA prelim compared predicted risk stratification and subtype classification of different multiparameter tests performed directly on the same population.
Methods: Three hundred thirteen women with early breast cancer were randomized to standard (chemotherapy and endocrine therapy) or test-directed (chemotherapy if Oncotype DX recurrence score >25) treatment. Risk stratification was also determined with Prosigna (PAM50), MammaPrint, MammaTyper, NexCourse Breast (IHC4-AQUA), and conventional IHC4 (IHC4). Subtype classification was provided by Blueprint, MammaTyper, and Prosigna.
Results: Oncotype DX predicted a higher proportion of tumors as low risk (82.1%, 95% confidence interval [CI] = 77.8% to 86.4%) than were predicted low/intermediate risk using Prosigna (65.5%, 95% CI = 60.1% to 70.9%), IHC4 (72.0%, 95% CI = 66.5% to 77.5%), MammaPrint (61.4%, 95% CI = 55.9% to 66.9%), or NexCourse Breast (61.6%, 95% CI = 55.8% to 67.4%). Strikingly, the five tests showed only modest agreement when dichotomizing results between high vs low/intermediate risk. Only 119 (39.4%) tumors were classified uniformly as either low/intermediate risk or high risk, and 183 (60.6%) were assigned to different risk categories by different tests, although 94 (31.1%) showed agreement between four of five tests. All three subtype tests assigned 59.5% to 62.4% of tumors to luminal A subtype, but only 121 (40.1%) were classified as luminal A by all three tests and only 58 (19.2%) were uniformly assigned as nonluminal A. Discordant subtyping was observed in 123 (40.7%) tumors.
Conclusions: Existing evidence on the comparative prognostic information provided by different tests suggests that current multiparameter tests provide broadly equivalent risk information for the population of women with estrogen receptor (ER)–positive breast cancers. However, for the individual patient, tests may provide differing risk categorization and subtype information
FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells
Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours
OPTIMA: A prospective randomized trial to validate the predictive utility and cost-effectiveness of gene expression test-directed chemotherapy decisions in early breast cancer
Background: Multi-parameter gene expression assays (MPAs) are widely used to estimate individual patient residual risk in hormone-sensitive HER2-negative node-negative early breast cancer, allowing patients with low risk to safely avoid chemotherapy. Evidence for MPA use in node-positive breast cancer is limited. OPTIMA (Optimal Personalised Treatment of early breast cancer usIng Multi-parameter Analysis) aims to validate MPA’s as predictors of chemotherapy sensitivity in a largely node-positive breast cancer population
Genomic profile of advanced breast cancer in circulating tumour DNA.
The genomics of advanced breast cancer (ABC) has been described through tumour tissue biopsy sequencing, although these approaches are limited by geographical and temporal heterogeneity. Here we use plasma circulating tumour DNA sequencing to interrogate the genomic profile of ABC in 800 patients in the plasmaMATCH trial. We demonstrate diverse subclonal resistance mutations, including enrichment of HER2 mutations in HER2 positive disease, co-occurring ESR1 and MAP kinase pathway mutations in HR + HER2- disease that associate with poor overall survival (p = 0.0092), and multiple PIK3CA mutations in HR + disease that associate with short progression free survival on fulvestrant (p = 0.0036). The fraction of cancer with a mutation, the clonal dominance of a mutation, varied between genes, and within hotspot mutations of ESR1 and PIK3CA. In ER-positive breast cancer subclonal mutations were enriched in an APOBEC mutational signature, with second hit PIK3CA mutations acquired subclonally and at sites characteristic of APOBEC mutagenesis. This study utilises circulating tumour DNA analysis in a large clinical trial to demonstrate the subclonal diversification of pre-treated advanced breast cancer, identifying distinct mutational processes in advanced ER-positive breast cancer, and novel therapeutic opportunities
ESR1 F404 mutations and acquired resistance to fulvestrant in ESR1 mutant breast cancer
Fulvestrant is used to treat patients with hormone receptor positive advanced breast cancer but acquired resistance is poorly understood. PlasmaMATCH Cohort A (NCT03182634) investigated the activity of fulvestrant in patients with activating ESR1 mutations in circulating tumor DNA (ctDNA). Baseline ESR1 mutations Y537S associated with poor, and Y537C with good outcome. Sequencing of baseline and EOT ctDNA samples (n=69) revealed 3/69 (4%) patients acquired novel ESR1 F404 mutations (F404L, F404I, F404V), in cis with activating mutations. In silico modelling revealed that ESR1 F404 contributes to fulvestrant binding to ERa through a pi-stacking bond, with mutations disrupting this bond. In vitro analysis demonstrated that single F404L, E380Q, and D538G models were less sensitive to fulvestrant, while compound mutations D538G+F404L and E380Q+F404L were resistant. Several oral ERa degraders were active against compound mutant models. We have identified a resistance mechanism specific to fulvestrant, that can be targeted by treatments in clinical development
The QuinteT Recruitment Intervention supported five randomized trials to recruit to target: a mixed-methods evaluation
ObjectiveTo evaluate the impact of the Quintet Recruitment Intervention (QRI) on recruitment in challenging randomized controlled trials (RCTs) that have applied the intervention. The QRI aims to understand recruitment difficulties, and then implements ‘QRI-actions’ to address these as recruitment proceeds.Study Design and SettingA mixed-methods study, comprising: a) before-and-after comparisons of recruitment rates and numbers of patients approached, and b) qualitative case studies, including documentary analysis and interviews with RCT investigators.ResultsFive UK-based publicly-funded RCTs were included in the evaluation. All recruited to target. RCT2 and RCT5 both received up-front pre-recruitment training before the intervention was applied. RCT2 did not encounter recruitment issues and recruited above target from its outset. Recruitment difficulties, particularly communication issues, were identified and addressed through QRI-actions in RCTs 1, 3, 4 and 5. Randomization rates significantly improved post-QRI-action in RCTs 1,3, and 4. QRI-actions addressed issues with approaching eligible patients in RCTs 3 and 5, which both saw significant increases in patients approached. Trial investigators reported that the QRI had unearthed issues they had been unaware of, and reportedly changed their practices post QRI-action.ConclusionThere is promising evidence to suggest the QRI can support recruitment to difficult RCTs. This needs to be substantiated with future controlled evaluations
The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis
Background: The associations between internal and external measures of training load and intensity are important in understanding the training process and the validity of specific internal measures. Objectives: We aimed to provide meta-analytic estimates of the relationships, as determined by a correlation coefficient, between internal and external measures of load and intensity during team-sport training and competition. A further aim was to examine the moderating effects of training mode on these relationships. Methods: We searched six electronic databases (Scopus, Web of Science, PubMed, MEDLINE, SPORTDiscus, CINAHL) for original research articles published up to September 2017. A Boolean search phrase was created to include search terms relevant to team-sport athletes (population; 37 keywords), internal load (dependent variable; 35 keywords), and external load (independent variable; 81 keywords). Articles were considered for meta-analysis when a correlation coefficient describing the association between at least one internal and one external measure of session load or intensity, measured in the time or frequency domain, was obtained from team-sport athletes during normal training or match-play (i.e., unstructured observational study). The final data sample included 122 estimates from 13 independent studies describing 15 unique relationships between three internal and nine external measures of load and intensity. This sample included 295 athletes and 10,418 individual session observations. Internal measures were session ratings of perceived exertion (sRPE), sRPE training load (sRPE-TL), and heart-rate-derived training impulse (TRIMP). External measures were total distance (TD), the distance covered at high and very high speeds (HSRD ≥ 13.1–15.0 km h−1and VHSRD ≥ 16.9–19.8 km h−1, respectively), accelerometer load (AL), and the number of sustained impacts (Impacts > 2–5 G). Distinct training modes were identified as either mixed (reference condition), skills, metabolic, or neuromuscular. Separate random effects meta-analyses were conducted for each dataset (n = 15) to determine the pooled relationships between internal and external measures of load and intensity. The moderating effects of training mode were examined using random-effects meta-regression for datasets with at least ten estimates (n = 4). Magnitude-based inferences were used to interpret analyses outcomes. Results: During all training modes combined, the external load relationships for sRPE-TL were possibly very large with TD [r = 0.79; 90% confidence interval (CI) 0.74 to 0.83], possibly large with AL (r = 0.63; 90% CI 0.54 to 0.70) and Impacts (r = 0.57; 90% CI 0.47 to 0.64), and likely moderate with HSRD (r = 0.47; 90% CI 0.32 to 0.59). The relationship between TRIMP and AL was possibly large (r = 0.54; 90% CI 0.40 to 0.66). All other relationships were unclear or not possible to infer (r range 0.17–0.74, n = 10 datasets). Between-estimate heterogeneity [standard deviations (SDs) representing unexplained variation; τ] in the pooled internal–external relationships were trivial to extremely large for sRPE (τ range = 0.00–0.47), small to large for sRPE-TL (τ range = 0.07–0.31), and trivial to moderate for TRIMP (τ range= 0.00–0.17). The internal–external load relationships during mixed training were possibly very large for sRPE-TL with TD (r = 0.82; 90% CI 0.75 to 0.87) and AL (r = 0.81; 90% CI 0.74 to 0.86), and TRIMP with AL (r = 0.72; 90% CI 0.55 to 0.84), and possibly large for sRPE-TL with HSRD (r = 0.65; 90% CI 0.44 to 0.80). A reduction in these correlation magnitudes was evident for all other training modes (range of the change in r when compared with mixed training − 0.08 to − 0.58), with these differences being unclear to possibly large. Training mode explained 24–100% of the between-estimate variance in the internal–external load relationships. Conclusion: Measures of internal load derived from perceived exertion and heart rate show consistently positive associations with running- and accelerometer-derived external loads and intensity during team-sport training and competition, but the magnitude and uncertainty of these relationships are measure and training mode dependent