209 research outputs found

    Alternative asset holdings by US pension funds since the 2008 financial crisis

    Get PDF
    Since the financial crisis of 2008, the percentage of alternative asset holdings by institutional investors has increased dramatically. The current study utilizes the Public Plans Database to analyze both the drivers and impacts of this increased allocation to alternative assets on US pension funds. The results indicate that there has been a significant divergence in the asset mixes of US pension funds since the 2008 financial crisis, with the largest adaptors of alternatives now holding one-third of their funds in these assets. Regression analysis shows that Funded Ratio and Actuarially Assumed Rate of Return are both negatively related to the adaptation of alternatives. Finally, the naïve simulation analysis shows that, despite the argued motivation for the adaptation of alternatives by market research, those funds that adapted the highest level of alternatives would have actually performed worse during the 2008 financial crisis than those funds that made only modest allocation changes since that time

    The structure of O-polysaccharide isolated from Cronobacter universalis NCTC 9529T

    Get PDF
    The O-polysaccharide (OPS) was isolated from Cronobacter universalis NCTC 9529T, a new species in the genus Cronobacter, which was created by the reclassification of the species Enterobacter sakazakii. Purified polysaccharide was analyzed by NMR spectroscopy (1H, COSY, TOCSY, ROESY, HSQC, and HSQC-TOCSY) and chemical methods. The monosaccharide derivatives were analyzed by gas chromatography, and gas chromatography-mass spectrometry. These experiments enabled the type and number of monosaccharides in the repeating unit of OPS, their positions of linkages, and absolute configuration to be determined. Together the chemical analysis established a structure of the OPS of C. universalis NCTC 9529T: →3)--L-FucpNAc-(1→4)--D-Manp-(1→3)--L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→ [A, B, C, D] OPS isolated from C. universalis was structurally characterized for the first time

    Tuberculosis treatment monitoring tests during routine practice : study design guidance

    Get PDF
    Funding: CMD reports project-specific funding from WHO; grants for various projects on TB diagnostics development and evaluation support from FIND, Geneva; grants for Rapid Research in Diagnostics Development (R2D2) for TB network from National Institutes of Health (NIH) US; grants for various projects on TB diagnostics development and evaluation from German Center for Infectious Disease Research (DZIF). EL-HM reports support for this project from the New Diagnostics Working GroupdBiomarkers Taskforce. Funding for the study was provided by the New Diagnostics Working Group-Biomarkers Taskforce. The New Diagnostics Working Group was supported by funding received from the Stop TB Partnership and USAID.Scope The current tools for tuberculosis (TB) treatment monitoring, smear microscopy and culture, cannot accurately predict poor treatment outcomes. Research into new TB treatment monitoring tools (TMT) is growing, but data are unreliable. In this document, we aim to provide guidance for studies investigating and evaluating TB TMT for use during routine clinical care. Here, a TB TMT would guide treatment during the course of therapy, rather test for cure at the regimen’s end. This document does not cover the use of TB TMTs as surrogate endpoints in the clinical trial context. Methods Guidelines were initially informed by experiences during a systematic review of TB TMTs. Subsequently, a small content expert group was consulted for feedback on initial recommendations. After revision, feedback from substantive experts across sectors was sought. Questions addressed by the guideline and Recommendations The proposed considerations and recommendations for studies evaluating TB TMTs for use during treatment in routine clinical care fall into eight domains. We provide specific recommendations regarding study design and recruitment; outcome definitions; reference standards; participant follow-up; clinical setting; study population; treatment regimen reporting; and index tests and data presentation. Overall, TB TMTs should be evaluated in a manner similar to diagnostic tests, but TB TMT accuracy must be assessed at multiple timepoints throughout the treatment course, and TB TMTs should be evaluated in study populations who have already received a diagnosis of TB. Study design and outcome definitions must be aligned with the developmental phase of the TB TMT under evaluation. There is no gold standard for TB treatment response, so different reference standards and comparator tests have been proposed, the selection of which will vary depending on the developmental phase of the TMT under assessment. The use of comparator tests can assist in generating evidence. Clarity is required when reporting of timepoints, TMT read-outs, and analysis results. Implementing these recommendations will lead to higher quality TB TMT studies which will allow data to be meaningfully compared, thereby facilitating the development of novel tools to guide individual TB therapy and improve treatment outcomes.Peer reviewe

    Urotensin receptor in GtoPdb v.2023.1

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 94]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 93]. Several structural forms of U-II exist in fish and amphibians [94]. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [2, 20, 63, 69, 72]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [61, 53, 10]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [86]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [94]. The urotensinergic system displays an unprecedented repertoire of four or five ancient UT in some vertebrate lineages and five U-II family peptides in teleost fish [91]

    Urotensin receptor in GtoPdb v.2021.3

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 93]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 92]. Several structural forms of U-II exist in fish and amphibians [93]. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [2, 20, 63, 69, 72]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [61, 53, 10]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [86]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [93]

    Urotensin receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 89]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 88]. Several structural forms of U-II exist in fish and amphibians. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [20, 62, 68, 70]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [53, 11]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [83]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [89]

    Secondary influenza challenge triggers resident memory B cell migration and rapid relocation to boost antibody secretion at infected sites.

    Get PDF
    Resident memory B (BRM) cells develop and persist in the lungs of influenza-infected mice and humans; however, their contribution to recall responses has not been defined. Here, we used two-photon microscopy to visualize BRM cells within the lungs of influenza -virus immune and reinfected mice. Prior to re-exposure, BRM cells were sparsely scattered throughout the tissue, displaying limited motility. Within 24 h of rechallenge, these cells increased their migratory capacity, localized to infected sites, and subsequently differentiated into plasma cells. Alveolar macrophages mediated this process, in part by inducing expression of chemokines CXCL9 and CXCL10 from infiltrating inflammatory cells. This led to the recruitment of chemokine receptor CXCR3-expressing BRM cells to infected regions and increased local antibody concentrations. Our study uncovers spatiotemporal mechanisms that regulate lung BRM cell reactivation and demonstrates their capacity to rapidly deliver antibodies in a highly localized manner to sites of viral replication
    • …
    corecore