10,066 research outputs found

    Anisotropy of nickel-base superalloy single crystals

    Get PDF
    The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime

    Community Detection as an Inference Problem

    Full text link
    We express community detection as an inference problem of determining the most likely arrangement of communities. We then apply belief propagation and mean-field theory to this problem, and show that this leads to fast, accurate algorithms for community detection.Comment: 4 pages, 2 figure

    Equilibration through local information exchange in networks

    Get PDF
    We study the equilibrium states of energy functions involving a large set of real variables, defined on the links of sparsely connected networks, and interacting at the network nodes, using the cavity and replica methods. When applied to the representative problem of network resource allocation, an efficient distributed algorithm is devised, with simulations showing full agreement with theory. Scaling properties with the network connectivity and the resource availability are found.Comment: v1: 7 pages, 1 figure, v2: 4 pages, 2 figures, simplified analysis and more organized results, v3: minor change

    Reconstruction of Causal Networks by Set Covering

    Full text link
    We present a method for the reconstruction of networks, based on the order of nodes visited by a stochastic branching process. Our algorithm reconstructs a network of minimal size that ensures consistency with the data. Crucially, we show that global consistency with the data can be achieved through purely local considerations, inferring the neighbourhood of each node in turn. The optimisation problem solved for each individual node can be reduced to a Set Covering Problem, which is known to be NP-hard but can be approximated well in practice. We then extend our approach to account for noisy data, based on the Minimum Description Length principle. We demonstrate our algorithms on synthetic data, generated by an SIR-like epidemiological model.Comment: Under consideration for the ECML PKDD 2010 conferenc

    Information processing and signal integration in bacterial quorum sensing

    Get PDF
    Bacteria communicate using secreted chemical signaling molecules called autoinducers in a process known as quorum sensing. The quorum-sensing network of the marine bacterium {\it Vibrio harveyi} employs three autoinducers, each known to encode distinct ecological information. Yet how cells integrate and interpret the information contained within the three autoinducer signals remains a mystery. Here, we develop a new framework for analyzing signal integration based on Information Theory and use it to analyze quorum sensing in {\it V. harveyi}. We quantify how much the cells can learn about individual autoinducers and explain the experimentally observed input-output relation of the {\it V. harveyi} quorum-sensing circuit. Our results suggest that the need to limit interference between input signals places strong constraints on the architecture of bacterial signal-integration networks, and that bacteria likely have evolved active strategies for minimizing this interference. Here we analyze two such strategies: manipulation of autoinducer production and feedback on receptor number ratios.Comment: Supporting information is in appendi

    Role of unstable periodic orbits in phase transitions of coupled map lattices

    Full text link
    The thermodynamic formalism for dynamical systems with many degrees of freedom is extended to deal with time averages and fluctuations of some macroscopic quantity along typical orbits, and applied to coupled map lattices exhibiting phase transitions. Thereby, it turns out that a seed of phase transition is embedded as an anomalous distribution of unstable periodic orbits, which appears as a so-called q-phase transition in the spatio-temporal configuration space. This intimate relation between phase transitions and q-phase transitions leads to one natural way of defining transitions and their order in extended chaotic systems. Furthermore, a basis is obtained on which we can treat locally introduced control parameters as macroscopic ``temperature'' in some cases involved with phase transitions.Comment: 13 pages, 9 figures; further explanation and 2 figures are added (minor revision

    Quantum walks in higher dimensions

    Full text link
    We analyze the quantum walk in higher spatial dimensions and compare classical and quantum spreading as a function of time. Tensor products of Hadamard transformations and the discrete Fourier transform arise as natural extensions of the quantum coin toss in the one-dimensional walk simulation, and other illustrative transformations are also investigated. We find that entanglement between the dimensions serves to reduce the rate of spread of the quantum walk. The classical limit is obtained by introducing a random phase variable.Comment: 6 pages, 6 figures, published versio

    Ulam method for the Chirikov standard map

    Full text link
    We introduce a generalized Ulam method and apply it to symplectic dynamical maps with a divided phase space. Our extensive numerical studies based on the Arnoldi method show that the Ulam approximant of the Perron-Frobenius operator on a chaotic component converges to a continuous limit. Typically, in this regime the spectrum of relaxation modes is characterized by a power law decay for small relaxation rates. Our numerical data show that the exponent of this decay is approximately equal to the exponent of Poincar\'e recurrences in such systems. The eigenmodes show links with trajectories sticking around stability islands.Comment: 13 pages, 13 figures, high resolution figures available at: http://www.quantware.ups-tlse.fr/QWLIB/ulammethod/ minor corrections in text and fig. 12 and revised discussio
    • 

    corecore