13,278 research outputs found

    A Renormalization Group for Hamiltonians: Numerical Results

    Full text link
    We describe a renormalization group transformation that is related to the breakup of golden invariant tori in Hamiltonian systems with two degrees of freedom. This transformation applies to a large class of Hamiltonians, is conceptually simple, and allows for accurate numerical computations. In a numerical implementation, we find a nontrivial fixed point and determine the corresponding critical index and scaling. Our computed values for various universal constants are in good agreement with existing data for area-preserving maps. We also discuss the flow associated with the nontrivial fixed point.Comment: 11 Pages, 2 Figures. For future updates, check ftp://ftp.ma.utexas.edu/pub/papers/koch

    The SO(N) principal chiral field on a half-line

    Get PDF
    We investigate the integrability of the SO(N) principal chiral model on a half-line, and find that mixed Dirichlet/Neumann boundary conditions (as well as pure Dirichlet or Neumann) lead to infinitely many conserved charges classically in involution. We use an anomaly-counting method to show that at least one non-trivial example survives quantization, compare our results with the proposed reflection matrices, and, based on these, make some preliminary remarks about expected boundary bound-states.Comment: 7 pages, Late

    Comprehensive cosmographic analysis by Markov Chain Method

    Full text link
    We study the possibility to extract model independent information about the dynamics of the universe by using Cosmography. We intend to explore it systematically, to learn about its limitations and its real possibilities. Here we are sticking to the series expansion approach on which Cosmography is based. We apply it to different data sets: Supernovae Type Ia (SNeIa), Hubble parameter extracted from differential galaxy ages, Gamma Ray Bursts (GRBs) and the Baryon Acoustic Oscillations (BAO) data. We go beyond past results in the literature extending the series expansion up to the fourth order in the scale factor, which implies the analysis of the deceleration, q_{0}, the jerk, j_{0} and the snap, s_{0}. We use the Markov Chain Monte Carlo Method (MCMC) to analyze the data statistically. We also try to relate direct results from Cosmography to dark energy (DE) dynamical models parameterized by the Chevalier-Polarski-Linder (CPL) model, extracting clues about the matter content and the dark energy parameters. The main results are: a) even if relying on a mathematical approximate assumption such as the scale factor series expansion in terms of time, cosmography can be extremely useful in assessing dynamical properties of the Universe; b) the deceleration parameter clearly confirms the present acceleration phase; c) the MCMC method can help giving narrower constraints in parameter estimation, in particular for higher order cosmographic parameters (the jerk and the snap), with respect to the literature; d) both the estimation of the jerk and the DE parameters, reflect the possibility of a deviation from the LCDM cosmological model.Comment: 24 pages, 7 figure

    The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: I. Basic Results

    Full text link
    The problem of finding the exact energies and configurations for the Frenkel-Kontorova model consisting of particles in one dimension connected to their nearest-neighbors by springs and placed in a periodic potential consisting of segments from parabolas of identical (positive) curvature but arbitrary height and spacing, is reduced to that of minimizing a certain convex function defined on a finite simplex.Comment: 12 RevTeX pages, using AMS-Fonts (amssym.tex,amssym.def), 6 Postscript figures, accepted by Phys. Rev.

    Structural brain correlates of interpersonal violence: systematic review and voxel-based meta-analysis of neuroimaging studies

    Get PDF
    Owing to inconsistent nomenclature and results, we have undertaken a label-based review and anatomical likelihood estimation (ALE) meta-analysis of studies measuring the quantitative association between regional grey matter (GM) volume and interpersonal violence. Following PRISMA guidelines, we identified studies by searching 3 online databases (Embase, Medline, PsycInfo) and reference lists. Thirty-five studies were included in the label-based review, providing information for 1288 participants and 86 brain regions. Per region, 0–57% of the results indicated significant reductions in GM volume, while 0–23% indicated significant increases. The only region for which more than half of all results indicated significant reductions was the parietal lobe. However, these results were dispersed across subregions. The ALE meta-analysis, which included 6 whole-brain voxel-based morphometry studies totaling 278 participants and reporting 144 foci, showed no significant clusters of reduced GM volume. No material differences were observed when excluding experiments using reactive violence as outcome or subjects diagnosed with psychopathy. Possible explanations for these findings are phenomenological and etiological heterogeneity, and insufficient power in the label-based review and ALE metaanalysis to detect small effects. We recommend that future studies distinguish between subtypes of interpersonal violence, and investigate mediation by underlying emotional and cognitive processes

    Nonlinear structures and thermodynamic instabilities in a one-dimensional lattice system

    Full text link
    The equilibrium states of the discrete Peyrard-Bishop Hamiltonian with one end fixed are computed exactly from the two-dimensional nonlinear Morse map. These exact nonlinear structures are interpreted as domain walls (DW), interpolating between bound and unbound segments of the chain. The free energy of the DWs is calculated to leading order beyond the Gaussian approximation. Thermodynamic instabilities (e.g. DNA unzipping and/or thermal denaturation) can be understood in terms of DW formation.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Stability of non-time-reversible phonobreathers

    Get PDF
    Non-time reversible phonobreathers are non-linear waves that can transport energy in coupled oscillator chains by means of a phase-torsion mechanism. In this paper, the stability properties of these structures have been considered. It has been performed an analytical study for low-coupling solutions based upon the so called {\em multibreather stability theorem} previously developed by some of the authors [Physica D {\bf 180} 235]. A numerical analysis confirms the analytical predictions and gives a detailed picture of the existence and stability properties for arbitrary frequency and coupling.Comment: J. Phys. A.:Math. and Theor. In Press (2010

    On Cavity Approximations for Graphical Models

    Get PDF
    We reformulate the Cavity Approximation (CA), a class of algorithms recently introduced for improving the Bethe approximation estimates of marginals in graphical models. In our new formulation, which allows for the treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction factors is explicitly carried out, and a message passing algorithm that implements the first order correction to the Bethe approximation is described. Furthermore we investigate an implementation of the CA for pairwise interactions. In all cases considered we could confirm that CA[k] with increasing kk provides a sequence of approximations of markedly increasing precision. Furthermore in some cases we could also confirm the general expectation that the approximation of order kk, whose computational complexity is O(Nk+1)O(N^{k+1}) has an error that scales as 1/Nk+11/N^{k+1} with the size of the system. We discuss the relation between this approach and some recent developments in the field.Comment: Extension to factor graphs and comments on related work adde
    corecore