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We reformulate the cavity approximation �CA�, a class of algorithms recently introduced for improving the
Bethe approximation estimates of marginals in graphical models. In our formulation, which allows for the
treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction
factors is explicitly carried out, and a message passing algorithm that implements the first order correction to
the Bethe approximation is described. Furthermore, we investigate an implementation of the CA for pairwise
interactions. In all cases considered we could confirm that CA�k� with increasing k provides a sequence of
approximations of markedly increasing precision. Furthermore, in some cases we could also confirm the
general expectation that the approximation of order k, whose computational complexity is O�Nk+1� has an error
that scales as 1 /Nk+1 with the size of the system. We discuss the relation between this approach and some
recent developments in the field.
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I. INTRODUCTION

The Bethe approximation �BA� is one of the major ingre-
dients leading to the important advances in combinatorial
optimization made by the statistical physics community in
recent years. The starting point of this line of research can be
traced back to �a� the inclusion of the replica-symmetry-
breaking scheme in the context of the Bethe approximation
�1,2� and �b� the application of the method to single instances
�3�. On the other hand, the Bethe approximation has become
a key issue in the context of information theory after it was
recognized that the well known belief-propagation �BP� al-
gorithm is tightly related to it �4�. This algorithm was intro-
duced in the context of Bayesian networks and has gained
interest after the discovery that the fast decoding of Turbo
codes and Gallager codes is indeed an instance of BP �5�.
Currently the problem of computing the corrections to the
BA is attracting increasing attention �see �6–8� for recent
literature�, not only for the applications mentioned above but
also because the BA is the only way of obtaining a mean-
field-like solution to many unsolved physical problems, no-
tably Anderson localization.

In this work we reinvestigate the cavity approximation
�CA�, a tool recently introduced in �6� to study graphical
models. The CA is a sequence of approximations defined
iteratively such that the BA corresponds to the zeroth order.
Its main features are the following for graphical models con-
sisting of N variables: �i� It can be implemented on a given
sample �much as the Bethe approximation and at variance
with the Replica method�, therefore to each approximation
corresponds a BP-like algorithm; �ii� the expansion at order k
�CA�k�� is correct on graphs with k loops, much as the Bethe
approximation is correct on trees; �iii� the computational
complexity of the corresponding algorithm grows as Nk+1;
�iv� when averaged over the samples the CA reproduces the
results of the Replica method; indeed, it corresponds to com-
puting the 1/Nk corrections within the cavity method. In �6�
it was argued that the CA is the natural approximation
scheme on locally treelike structures, in the sense that CA�k�

yields the O�1/Nk� corrections for models defined on random
graphs. In this paper we confirm this expectation by imple-
menting algorithmically the CA; in particular, we apply
CA�0� �i.e., BA�, CA�1�, and CA�2� to instances of graphical
models defined on random graphs. We conclude that the CA
is an efficient tool to improve �with polynomial complexity�
the BA on this class of models that includes notably the
error-correcting codes mentioned above. We also formulate
the theory in a representation that allows for straightforward
generalization to factor graphs with arbitrary order of the
interaction factors. Message passing equations for the imple-
mentation of such a generalization are given explicitly. We
discuss the relationship between this approach and other ap-
proaches to go beyond the BA.

II. CAVITY APPROXIMATION: BASIC IDEAS

In �6� the approach was illustrated in the case of binary
variables with pairwise interactions. In the following, for the
sake of completeness, we present the case of multivalued
variables with generic pairwise interactions Hij�xi ,xj�. The
same ideas and methods can be applied to models with mul-
tiple interactions �factor graphs�.

The basic assumption of the BA is that, once a node �say
�0 in Fig. 1� is removed from the system, the nodes that were
connected to it ��1, �2, and �3� become uncorrelated. This is
true on a tree but it is not true in general if loops not shown
in Fig. 1 are present. From this assumption one can obtain
estimates of local averages of the variables. We consider two
questions.

�1� How can we estimate the correlation between node �2
and �3 when node �0 is removed from the system?

�2� How can we use these correlations to improve the
estimates of the local averages?

In order to answer these questions local cavity distribu-
tions are introduced and equations are derived for them. The
equations will not be sufficient to compute all the cavity
distributions and they will be partially estimated through a
Bethe-like approximation. For each node i we define �i the
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neighbors of i and x�i��xj : j��i�. For each node i we con-
sider its cavity distribution, defined as the distribution
P�i��x�i� of its neighbors in the graph, obtained by removing
the variable i from the original graph. Note that the knowl-
edge of P�i��x�i� �the Markov blanket of i� is sufficient to
determine P�xi ,x�i� through the formula

P�xi,x�i� = cP�i��x�i� �
j��i

�ij�xi,xj� , �1�

where �ij�xi ,xj��exp(−�Hij�xi ,xj�) and c is a normalization
constant. Now we consider the effect of adding to the system
without node x0 all the interactions but �10. We can express
the marginal of site x0 in this system in terms of P�0��x�0�:

P�01��x0� = c	 

�x�0/1�

�
j��0/1

P�0��xj��0j�x0,xj�

+ 

�x�0/1�

��0��x�0/1� �
j��0/1

�0j�x0,xj�� , �2�

where c is a normalization and we have introduced the con-
nected cavity correlation of the set x�0/1, ��0��x�0/1�
� P�0��x�0/1�−� j��0/1P�0��xj�. The same object may be calcu-
lated starting from the system without the variable node x1
and inserting all interactions but �10�x1 ,x0�:

P�01��x0� = P�1��x0� +



�x1,x�1/0�

��1��x0,x�1/0� �
i��1/0

�1j�x1,xj�



�x1,x�1/0�

P�1��x�1/0� �
i��1/0

�1j�x1,xj�
,

�3�

where we have introduced another cavity connected correla-
tion ��1��x0 ,x�1/0�� P�1��x0 ,x�1/0�− P�1��x0�P�1��x�1/0� and the
suffix means that quantities are computed in the system with-
out node x1. Equating the right-hand-side of Eqs. �2� and �3�,
we obtain an equation that connects the cavity distributions
of neighboring nodes:

P�1��x0� = c	 

�x�0/1�

�
j��0/1

P�0��xj��0j�x0,xj�

+ 

�x�0/1�

��0��x�0/1� �
j��0/1

�0j�x0,xj��

−



�x1,x�1/0�

��1��x0,x�1/0� �
i��1/0

�1j�x1,xj�



�x1,x�1/0�

P�1��x�1/0� �
i��1/0

�1j�x1,xj�
. �4�

We note that this equation is exact and is valid also if some
of the nodes connected to x0 coincide with those connected
to x1. We have 2L such equations, two for each link �the
other equation for link �01� is obtained exchanging indices in
Eq. �4� according to �0↔1, 2↔4, 3↔5��. Unfortunately
these equations are not sufficient to determine the full set of
cavity distributions, which is easily seen noticing that if we
knew all the connected cavity correlations ��i��xj ,x�i/j� and
��j��x�j/i� for each link �i , j� then the 2L cavity equations
should be in principle sufficient to determine the remaining
2L unknown cavity distributions P�j��xi�. The Bethe approxi-
mation assumes that the variable nodes on the cavity of node
i are uncorrelated in the absence of node i. As a conse-
quence, the corresponding probability distributions are fac-
torized and the connected correlations are zero ���i��xj ,x�i/j�
=0, ��j��x�j/i�=0� for each link �i , j�; therefore Eq. �4� reduces
to the standard belief-propagation equation.

III. ESTIMATING THE CAVITY DISTRIBUTION

In general, if we have an estimate of P�j��x�j� for any node
j we can compute the various connected correlations in Eq.
�4� and solve the cavity equations obtaining an improved
estimate of P�i��xj�. In the following we argue that to esti-
mate the joint probability distribution P�j��x�j� it is sufficient
to have an algorithm �e.g., BP� that estimates single site mar-
ginals P�xi�. Indeed suppose that we have such an algorithm,
then in order to get an estimate of P�j��x�j� we remove node
j from the graph and evaluate P�j��xj1

� through the given
algorithm, where �xj1

, . . . ,xjk
���j. Then we fix the value of

xj1
and compute P�j��xj2

�xj1
� through the same algorithm, and

so on. In the end the distribution can be reconstructed from
the formula

P�j��x�j� = P�j��xj1
��

i=2

k

P�j��xji
�xj1

, . . . ,xji−1
� , �5�

where k is the number of nodes on the cavity of j. In other
words, in order to determine P�j��x�j� we have to run the
approximate algorithm removing site j and fixing sequen-
tially the values of x�j. In the following sections we will refer
to this procedure to estimate the cavity connected correla-
tions by sequentially fixing the values of the cavity spins as
the “clamping” procedure. Note that this is easier to imple-
ment than the use of the fluctuation-dissipation-theorem
originally proposed in �6� since the latter requires taking de-
rivatives of Eq. �4�.

Any algorithm may be used to obtain a first estimate of
P�j��x�j�; in particular, we can use the BA and obtain an im-

1 0

2

3

4

5

FIG. 1. The marginals of nodes 0 and 1 in the absence of link
�01� can be expressed in terms of the joint probabilities of nodes
0,4,5 in the absence of node 1 or of the joint probabilities of nodes
1,2,3 in the absence of node 0. The equality of the results yields the
cavity eauations.

RIZZO, WEMMENHOVE, AND KAPPEN PHYSICAL REVIEW E 76, 011102 �2007�

011102-2



proved cavity approximation of order 1 �CA�1��. The proce-
dure can be iterated yielding CA�k� �with CA�0��BA� as
follows.

�1� Write the exact cavity equations for the system.
�2� For each variable node i:

�a� remove xi;
�b� express P�i��x�i� in terms of conditional probabilities

through Eq. �5�;
�c� use CA�k−1� to compute the conditional probabili-

ties, compute P�i��x�i� and then ��i�.
�3� Substitute the estimates of ��i� into the exact equations

and recompute the 2L cavity distributions Pj
�i��xj�.

In practice the procedure can be implemented through a
message-passing algorithm of which the computational com-
plexity grows with order k as Nk+1.

IV. PERTURBATIVE APPROACH FOR PRACTICAL
IMPLEMENTATIONS

We note that the use of Eq. �5� requires the application of
the algorithm CA�k−1� a number of times exponential in the
size of the cavities, therefore it may be convenient to use an
approximate expression of Eq. �5�. In the following we dis-
cuss one such approximation. For a given set of nodes A we
define the connected correlation functions as usual, in par-
ticular we have: c�x�= P�x�, c�x ,y�= P�x ,y�− P�x�P�y� and
so on. The probability distribution of a set of nodes A can be
written as

P�xA� = 

�A1,. . .,An�

c�xA1
� ¯ c�xAn

� , �6�

where �A1 , . . . ,An� runs over the partitions of A. Under
some conditions one can assume that P�x� is O�1�
while c�x ,y� is small, say O��� �where � is some
small parameter�, c�x ,y ,z�=O��2�, etc. For instance,
in the representation P�xA��exp�
iai�xi�+
i�jaij�xi ,xj�
+
i�j�kaijk�xi ,xj ,xk�+ ¯ � this approximation is valid if the
interaction terms between k variables are proportional to
�k−1. As before the connected correlation functions can be
expressed through conditional probabilities, i.e., c�x ,y�
= �P�x �y�− P�x��P�y� and can be determined through any al-
gorithm that yields the local distributions P�x�. These obser-
vations can be used to reduce the number of quantities to be
estimated at each cavity, in particular, steps 2�b� and 2�c� can
be modified in the following way:

�b� Express P�i��x�i� through Eq. �6� assuming that all con-
nected correlation functions of more than k+1 nodes vanish.

�c� Use CA�k−1� on the corresponding system to deter-
mine the connected correlations through conditional prob-
abilities.

In the following we call CA�k� the approximation scheme
that includes the previous assumption. It was shown in �6�
that CA�k� is exact on graphs with k loops, much as the
Bethe approximation is exact on trees. It can be argued that
this approximation scheme yields the perturbative expansion
in powers of 1 /N on models defined on random graphs of
size N, roughly speaking it means that the CA�k� yields the
local marginals with an error O�1/Nk+1�. Indeed in the large

N limit random graphs are locally treelike, the loops typi-
cally being large. On a locally treelike portion of a random
graph the two-point cavity connected correlations are deter-
mined by large loops and therefore are small; the three-point
cavity correlations depend on the correlations between these
large loops and are even smaller, in general we expect that
the cavity correlations of k nodes yield an effect O�1/Nk−1�.
Therefore, in such a region we expect that CA�k� is really a
perturbative expansion. On the other hand, small loops �l
	 ln N� are definitely present in random graphs; see �9� and
references therein. The typical graph contains a finite number
of small loops and in general graphs with a finite number of
small structures of k nearby loops have probability
O�1/Nk−1�. Using the exactness of CA�k� on graphs with k
loops �6� mentioned above it can be argued that the presence
of these small loops does not destroy the perturbative nature
of the expansion.

V. GENERALIZATION TO ARBITRARY FACTOR
GRAPHS

The above strategy, which up to now has been restricted
to two-variable interaction models, may be generalized sur-
prisingly easily for factor graphs with arbitrary number of
variables in each factor. We will write down exact equations,
as before, for a definition of epsilon functions that corre-
sponds to an expansion around totally factorizing cavity dis-
tributions, and later we will neglect higher order terms. The
resulting equations explicitly yield a message passing algo-
rithm that takes into account the first order correction
�CA�1�� to belief propagation. In our notation, roman indices
�i , j ,k , . . . � will denote variables and greek indices
�
 ,� ,� , . . . � denote factors. The factor indices are under-
stood to simultaneously represent the subset of roman indi-
ces corresponding to the variables in the factor.

A. Exact equations

The exact equations for the marginal of variable xi in the
absence of factor 
 reads

P�
��xi� = c	

x�i\


�
���i\


���x�� �
j��\i

P�i��xj��
+ 


x�i\


��i��x�i\

� �

���i\

���x��� , �7�

P�
��xi� = P�j��xi� +



xj,x� j\


��j��xi,x�j\

� �

���j\

���x��



xj,x� j\


P�j��x�j\

� �

���j\

���x��

, �8�

where the expansion parameters are given by

��i��x�i\

� = P�i��x�i\


� − �
���i\


 �
l��\i

P�i��xl�� , �9�

��j��xi,x�j\

� = P�j��xi,x�j\


� − P�j��xi�P�j��x�j\

� . �10�
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B. Truncated expansion

In the following, we will assume that ∀i∀
1, 
2��i and
we have that 
1�
2= �i�. Up to first order in two-point con-
nected correlations, we may write

��j��xi,x�j\

� � 


���j\




k��\i
c�j��xi,xk� �

l��\i,k
�P�j��xl��

� �
���j\�
,��

 �
m��\j

P�j��xm�� , �11�

��i��x�i\

� � 


���i\




k�l��\i
c�i��xk,xl� �

m��\�k,l,i�
�P�i��xm��

� �
���i\�
,��

 �
n��\i

P�i��xn��
+ 


�����i\



k��



l��

c�i��xk,xl� �
m��\�i,k�

�P�i��xm��

� �
n��\�i,l�

�P�i��xn�� �
��i\�
,�,��

�
r�\i

�P�i��xr�� .

�12�

Let us introduce some notation:

�
→i�xi� � 

x
\i

�
j�
\i

�P�i��xj���
�x
� , �13�

�
→i�xi� � 

x
\i



j�k�
\i

c�i��xj,xk� �
l�
\�i,j,k�

�P�i��xl���
�x
� ,

�14�

��
,��→i�xi� � 

x
\i



x�\i



j�
\i



k��\i

c�i��xj,xk�

��
�x
����x�� �
l�
\�i,j�

�P�i��xl��

� �
m��\�i,k�

�P�i��xm�� , �15�

�
→i�xi,xj� � 

x
\i



k�
\i

c�i��xj,xk� �
l�
\�i,k�

�P�i��xl���
�x
� .

�16�

These functions may be interpreted as generalized messages,
where the �
→i�xi� are the familiar ones appearing in belief
propagation. Putting things together, we may write up to first
order

P�j��xi� �
G�
��xi�



xi

G�
��xi�

−



���j\




xj

��→j�xj,xi� �
���j\�
,��

��→j�xj�



xj

�
���j\


��→j�xj�

�17�

where

G�
��xi� =  �
���i\


��→i�xi� + 

���i\


��→i�xi� �
���i\�
,��

��→i�xi�

+ 

�����i\


��,�→i�xi� �
��i\�
,�,��

�→i�xi�� . �18�

The true marginals

P�xi� = c

x�i

P�i��x�i
� �

���i

���x�� �19�

up to first order read

P�xi� �
G�xi�



xi

G�xi�
, �20�

G�xi� =  �
���i

��→i�xi� + 

���i

��→i�xi� �
���i\�

��→i�xi�

+ 


����i

�
,�→i�xi� �
���i\
,�

��→i�xi�� . �21�

From these equations the pair-interaction case may straight-
forwardly be recovered: The � messages do not appear, and
the remaining messages are given by

�
→i�xi� = 

xk

P�i��xk��
�xi,xk� , �22�

�
,�→i�xi� = 

xk,xl

c�i��xk,xl��
�xi,xk����xi,xl� , �23�

�
→i�xi,xj� = 

xk

c�i��xj,xk��
�xi,xk� . �24�

Note that the messages �
→i, ��
,��→i and �
→i should all be
“small” compared to �
→i in absolute sense. If they are not,
the method is bound to fail in this order of approximation.
Indeed these messages are not normalized, contrary to the
P�i��xj�. When the “small” messages are actually neglected in
total, it is easily seen that one recovers the belief propagation
equations.

C. Complexity issues

In the above form, we can nicely distinguish the depen-
dence of the complexity of the algorithm on factor size ver-
sus size of the cavities. The computation of the messages
looks exponential in the quadratic factor size, but this cost
may be reduced by storing quantities of the form

�
�xi,xj� = 

x
\�i,j�

�
k�
\�i,j�

�P�i��xk���
�x
� . �25�

Using these quantities, the computation time scales slightly
worse than exponential in the factor size. The dependence on
the number of factors in a cavity is found from Eq. �17�,
from which it is obvious that this dependence is quadratic.

VI. RESULTS: CONFIRMING SCALING OF THE ERROR
WITH N

In �6� the perturbative nature of the expansion on random
graphs has been confirmed by computing the average of the
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energy density in the paramagnetic phase of a spin-glass de-
fined on a random graph. In particular it has been checked
that the first order approximation yields the O�1/N� correc-
tion to the energy that was computed independently through
the replica method.

Currently we report tests of the approximation and the
corresponding algorithms on specific instances of random
graphs. We have applied the algorithms CA�0� �i.e., BP�,
CA�1�, and CA�2� to systems of binary variables �spin �i
= ±1, i� �1, . . . ,N�� described by the microstate probability
distribution

P��� =
e�
i�jJij�i�j+
iHi�i



�

e�
i�jJij�i�j+
iHi�i
. �26�

The nonzero entries of the matrix Jij form a random graph of
fixed connectivity equal to three, and we subsequently inves-
tigated ferromagnetic interactions �Jij =1 for all nonzero en-
tries� and spin-glass interactions �Jij = ±1 with equal prob-
ability for all nonzero entries�.

The use of binary variables allows us to write Eq. �4� in
terms of magnetizations and connected correlation functions
�see �6��; as explained in Sec. IV, it is assumed that all con-
nected cavity correlations of more than k+1 spins vanish
when applying the CA�k−1� algorithm in the intermediate
step of the CA�k� algorithm. In Fig. 2�a� we report the results
for a ferromagnet with Hi=0∀ i at �=0.3, corresponding to a
paramagnetic phase �note that for N→� the critical tempera-
ture is given by �c= 1

2 ln�3��. We compared the various esti-
mates obtained with CA�0�, CA�1�, and CA�2� with the exact
result obtained through a junction tree algorithm �10�; thus
we were forced to consider systems sizes up to N=120, al-
though the algorithms we are considering can be applied to
much larger systems. For the current ferromagnetic model, a
first order loop correction algorithm based on linear response
took approximately 110 s to run for a graph of 103 nodes,
and three hours for 104 nodes, on a 2 GHz machine with
1 GB memory �note that the time difference is indeed
roughly a factor 102 as should be expected�. For different
sizes of the system we plot the average over 100 random
instances of the error of the estimate of the total energy and
of the average mean-squared error of the energy of each link.
As expected we see that the three algorithms give results of
increasing precision; furthermore, we see that the error of the
BP �CA�0�� total energy scales with the systems size as 1/N
while those of CA�1� and CA�2� scale respectively as 1/N2

and 1/N3.
In Fig. 2�b� we report analogous results for a spin-glass

again with Hi=0 at �=0.3 and with random interactions Jij
= ±1. We note that both cases correspond to a paramagnetic
region (the critical temperature for the N→� spin glass is
given by �c= �1/2�ln���2+1� / ��2−1��), although the algo-
rithm can be applied also in the ferromagnetic region. In the
paramagnetic region, however, one may exploit the fact that
odd moments of all �marginal� distributions are zero, signifi-
cantly reducing the complexity of the algorithm. The results
for the spin glass model naturally display more fluctuations
than the ones for the ferromagnet, since the interaction val-

ues are drawn from a distribution, whereas for the ferromag-
net they are all equal and thus identical for each of the 100
instances. Since large deviations dominate the average errors
for small error values, we plotted error averages in the log
domain for the spin glass, i.e., exp�ln��E��. Although the
correspondence is less convincing than for the ferromagnet,
the scaling of errors roughly follows the same exponents.
The deviation from this behavior should disappear for larger
N. Note that we have used linear response as proposed in �6�
to estimate the cavity connected correlations. Details regard-
ing the corresponding update equations for the algorithm are
given in the Appendix.

Figures 3 illustrate the � dependence, where in �a� the
total energy is plotted, and in �b� the root mean square error
of link energies, both as a function of �, for a ferromagnet
with N=120. Clearly the CA�1� and CA�2� methods outper-
form the BA in all but a small region around the “phase
transition,” where correlation lengths diverge and conse-
quently the connected correlation terms blow up. Naturally
perturbative approaches do not result in improved estimates
of marginals in this regime, in fact the CA�1� and CA�2�
methods cease to converge around �=0.55. Note that the
most difficult part is not estimating the connected correla-
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FIG. 2. �Color online� �a� Ferromagnet on random graph with
�=0.3, fixed connectivity 3, and 100 samples. Data points represent
averages of the errors of the total energy and mean-squared error
per link of the estimates of CA�0� �blue �, chyan *�, CA�1� �light
green �, dark green ��, and CA�2� �red � magenta ��, as a
function of the sample size N; see text. �b� Same as �a�, for a
spin-glass model, but average is taken in the log domain �see text�.
In both figures, black lines with a 1/N, 1 /N2, and 1/N3 scaling
respectively are drawn for comparison.
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tions, which are based on the BA �and BP converges rela-
tively close to the critical ��, but the adapted update equa-
tions for P�i��xj�, Eq. �4� in CA�1� �Eq. �A1� in the
Appendix�, which do not converge. In general one might be
able to optimize an update scheme for these equations, which
we have not attempted here. It can be observed in the figure
that different ways to estimate the connected correlations
may affect the performance near the phase transition, i.e.,
using linear response results in larger errors than using a
clamping procedure as described in Sec. III. Also note that
the second order algorithm in the figure is based on linear
response.

Apart from problems around the critical value of �, for
larger � the inversion symmetry in the model is broken by
the approximation algorithms, that consequently disregard
the mirror-state free energy valley. In these small-scale mod-
els, this does affect the results as can be seen from Fig. 3.

When the symmetry of the model is already broken by a
sufficiently large external field, a situation which is common
in statistical inference applications, where the external fields
may originate from Bayesian priors or represent evidence
from measurement data �see, e.g. �11��, this phenomenon
does not occur. The CA�1� algorithm consistently improves
the marginal estimates over the whole range of �, as illus-
trated in Fig. 4. When the average external field is relatively

small, symmetry breaking might again prevent convergence
�Fig. 4�b� for ��0.9�.

In the “magnetized” regime of this model, one may do a
similar scaling analysis as displayed in Fig. 2. Results are
reported in Fig. 5 for a model with ferromagnetic interac-
tions and different values of the external field average, where
we plot the error of the first order CA�1� algorithm as a
function of N. Although the results display more fluctuations,
the behavior is similar, in the sense that one observes on
average a scaling with showing that indeed as long as the
parameters correspond to regions not in the vicinity of a
phase transition, and the correlation lengths remain typically
small compared to the loop length, the approach is promis-
ing.

VII. DISCUSSION

The implemented approach is intrinsically perturbative
around the BA, in the sense that the BA gives accurate re-
sults if the correction terms in Eq. �4� are small and therefore
it is natural to guess that CA�1� will produce better results.
At the same time if the corrections turn out not to be small,
this hints at poor BP estimates, and the whole approach is in
trouble �see Fig. 3�b��. Furthermore we cannot compute
CA�1� if BP does not converge. However, we recall that any
algorithm can be used as the starting point CA�0� of the
sequence of approximations. The models for which we pro-
duced our proof of principle allow for the implementation of
an algorithm in an efficient way, such that averaging over
multiple instances of graphs is possible. An algorithmic
implementation for more general type of models along the
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FIG. 3. �Color online� �a� Average energy per link as a function
of � for an N=120 random ferromagnet as obtained exactly via
junction tree �black line�, BP or CA�0� �red ��, CA�1� with linear
response initialization �blue ��, CA�1� initialized with the clamping
procedure discussed in this paper �magenta ��, and CA�2� �only in
the paramagnetic regime, green ��. �b� Mean square error of link
energy, same color code as �a�. Note that in the regime approaching
the phase transition the clamping strategy �magenta �� seems to
perform better than the response propagation procedure.
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FIG. 4. �Color online� Model of a ferromagnet on a k=3, N
=60 random graph with nonzero magnetizations and random nor-
mally distributed external fields of variance 1 and average 1 �a� or
0.2 �b�. Root mean square errors of link energies for BP �red �� are
compared to first order corrected BP �blue ��. Moreover, root mean
square errors of single variable averages for BP �green �� are com-
pared to first order corrected BP ones �black ��. For average exter-
nal field 0.2 �b� the first order corrected algorithm does not con-
verge for ��0.9.
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lines of Sec. V is more involved, and would require some
extra time. We are working on such an algorithmic imple-
mentation, but we believe that the results obtained so far are
worth publication. Furthermore, the hardest obstacle in this
context is the presence of an exponentially large number of
large loops, i.e., a nonlocal effect. This crucial problem is
already present in the models we considered while consider-
ing multivalued variables and interactions modifies the prob-
lem at a purely local level and does not change its nature. In
conclusion we expect that whenever BP converges and yields
good estimates, CA�k� yields a series of approximations of
increasing precision. In particular, for graphical models de-
fined on random graphs where small loops are rare, CA�k�
gives estimates with an error O�1/Nk+1� and with computa-
tional complexity Nk+1. Note that this last class of models
includes some of the most important present-date error-
correcting codes for which the decoding scheme is BP. The
reason why BP is so efficient in these cases is precisely that
in the corresponding graphical models small loops are rare.
Therefore, we expect that by the application of CA�k� the
marginals can be computed with any precision in polynomial
time. It is important to realize that this does not completely
solve the problem of the 1/N finite-size effect in error-

correcting codes, indeed even if we know the exact margin-
als, there is still the possibility that some of them are not
consistent with the encoded original message.

VIII. RELATION WITH OTHER APPROACHES

The previous comments should help the reader to under-
stand what is the natural context of the present approach and
to clarify the relationship with different approaches. A well-
known generalization of the BA is Kikuchi’s cluster variation
method �CVM� �12� which is particularly suitable for finite-
dimensional models and in general for models where many
small loops are present, indeed this approach amounts to
treating loops up to a certain length exactly. On the other
hand, on random graphs the corrections to the BA are deter-
mined not by small loops �which are rare� but by many large
loops. The CVM does not apply to such cases since, in order
to include the effect of the large loops, the size of the basic
clusters that it treats exactly should be of the order of the
total system size, with prohibitive computational complexity.
On the other hand, it is natural to expect that CVM performs
much better than CA�k� on graphical models defined on
structures with many small loops like lattices. Thus the cav-
ity approaches are complementary to CVM, in the sense that
both methods have their own well-defined range of applica-
tions, although one can imagine applications that could best
be studied through a mixture of them.

In a recent publication Chertkov and Chernyak �CC� �7�
obtained the free energy of a generic graphical model as an
expansion around the BA written in terms of diagrams cor-
responding to subgraphs with one loop, two loops and so on.
In spite of their claim that this represents an improvement
with respect to the approach presented here we believe that
the two approaches have different motivations and capabili-
ties. The present approach addresses the problem of improv-
ing the computation of marginals with polynomial algo-
rithms for models defined on random graphs �with error
correcting codes being a notable example of this class of
models� and it is as yet not clear if similar results are achiev-
able within the CC approach. Indeed we know that the 1/N
corrections computed by CA�1� with N2 complexity are de-
termined by exponentially many large loops �each one yield-
ing a small contribution�, therefore it seems likely that in
order to obtain results of the quality of CA�1� �i.e., the 1/N
corrections� one should consider all graphs with one loop in
the CC expansion, yielding an exponential number of terms,
which is computationally prohibitive unless some resumma-
tion scheme is supplemented. Recently �13� an algorithm
was tested based on truncation of the series, which may work
in cases where one is able to identify the most important
loops that contribute to the BP error, when there are not too
many.

In a very recent paper �14�, a number of different algo-
rithms based on similar ideas as the above have been de-
scribed, and have been applied to some real-world problems.
Given an estimate of the cavity distributions, the update re-
lations in �14� are based on an adjustment of external fields,
�keeping higher order interactions in the cavity distribution
fixed, whereas, we keep the higher order connected correla-
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FIG. 5. �Color online� Scaling behavior for a ferromagnet in a
broken symmetry magnetized regime caused by normally distrib-
uted external fields Hi of variance 1 and average 0.5 �a� versus 1
�b�. Blue ���: Root mean square error in BP correlations. Magenta
���: Root mean square error in BP site magnetizations. Red ���:
Root mean square error in CA�1� correlation. Green ���: Root
mean square error in CA�1� site magnetizations. Black ���: Error in
CA�1� mean energy per link. All data are averages over 100 in-
stances of a random graph of connectivity 3.
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tions fixed�. Although the connection with higher order im-
provements in their scheme is lost, the algorithms are some-
times easier to implement in the first order case, if the
connectivity of the graph is not too large.

Some open problems of the present approach include the
computation of the 1/N corrections to the free energy �cur-
rently we know only how to improve the marginals, therefore
we have access only to corrections to local quantities such as
the magnetization and the energy� and the extension to the
spin-glass phase with the inclusion of replica-symmetry-
breaking effects.
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APPENDIX: CA[1] AND CA[2] UPDATE EQUATIONS
FOR CONNECTIVITY 3

1. CA [1] updates

The update equations for the first moment Mj
�i� of a

cavity marginal P�i��xj� may be written out in terms of
connected correlation functions, i.e., Mk

�i�=
xk
c�i��xk�xk, Ckl

�i�

=
xk,xl
c�i��xk ,xl�xkxl and Cklm

�i� =
xk,xl,xm
c�i��xk ,xl ,xm�xkxlxm

�see �6��:

Mj
�i� =

t�Hj�Kij + 

l��j\i

tjlMl
�j�

Kij + t�Hj� 

l��j\i

tjlMl
�j�

−

Lij + t�Hi� 

k��i\j

tikCjk
�i�

Kji + t�Hi� 

k��i\j

tikMk
�i�

,

�A1�

where

Kij = 1 + 

k�l��j\i

tjktjl�Mk
�j�Ml

�j� + Ckl
�j�� , �A2�

Lij = 

k�l��i\j

tiktil�Cjl
�i�Mk

�i� + Cjk
�i�Ml

�i� + Cjkl
�i� � . �A3�

The solution of these equations leads to the moment of the
true marginal P�xi� via

Mi =
Todd

�i� + t�Hi�Teven
�i�

t�Hi�Todd
�i� + Teven

�i� ,

Todd
�i� = 


l��i

tilMl
�i� + 


�l,k,m���i

tiltiktimMl
�i�Ckm

�i�

+ 

l�k�m��i

tiltiktim�Ml
�i�Mk

�i�Mm
�i� + Clkm

�i� � ,

Teven
�i� = 1 + 


k�l��i

tiltik�Ml
�i�Mk

�i� + Clk
�i��� . �A4�

Correspondingly, the nearest neighbor correlations read



xi,xj

P�xi,xj�xixj =
Fij

Teven
�i� + t�Hi�Todd

�i� , �A5�

where

Fij = t�Hi��Mj
�i� + Lij� + 


l��i\j
til�Cjl

�i� + Mj
�i�Ml

�i�� + tijKji

+ t�Hi� 

l��i\j

tilMl
�i�� + t�Hi� 


l�k��i\j
tiktilMj

�i��Ml
�i�Mk

�i�

+ Clk
�i�� . �A6�

In the CA�1� approximation, the two-point connected corre-
lations are estimated by some algorithm, possibly CA �0�
�another option is to use response propagation, see �6��, and
the three-point connected correlations are neglected.

2. CA[2] updates

The CA�2� algorithm in turn uses improved estimates of
the two-point connected correlations of which the accuracy
corresponds to CA�1�, together with CA�0� �or response
propagation� three-point estimates. We used response propa-
gation to compute the CA�1� accurate two-point cavity con-
nected correlations. This implies we exploit

Cik
�j� = �−1�Mi

�j�

�Hk
, �A7�

but Mi
�j� is computed with CA�1� accuracy, i.e., from Eq.

�A4� on the graph from which variable j has been removed.
This may be achieved by simply taking the derivative of the
right-hand side of Eq. �A4�. In this expression, we encounter
�Mk

�i� /�Hl and �Ckl
�i� /�Hm. The first may be found from the

iterative equation resulting from taking the derivative of Eq.
�A1�, the second may be estimated with a CA�0� or response
propagation algorithm, since it is of the order of Cklm

�i� .
In the paramagnetic phase of pair interaction networks

without external field, simplifications occur since we may
exploit the fact that odd moments of distributions are zero.
Consequently, all terms Mi, Mi

�j�, Cikl
�j�, and �Cjk

�i� /�Hl vanish
and the recursive update relations for the derivatives of Eq.
�A1� reduce to

�Ml
�j�

�Hn
= � 


k��l\j
tlk

�Mk
�l�

�Hn

1 + 

k�r��l\j

tlktlrCkr
�l�

+ �ln��
−



k�r��j\l

tjktjr �Mr
�j�

�Hn
Clk

�j� +
�Mk

�j�

�Hn
Clr

�j��
1 + 


k�r��j\l
tjktjrCkr

�j�

+ � jn

� 

k��j\l

tjkClk
�j�

1 + 

k�r��j\l

tjktjrCkr
�j�

. �A8�

The solution of these equations is to be substituted in
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�Mj

�Hn
=



l��j

tlj

�Ml
�j�

�Hn

1 + 

k�l��j

tjktjlClk
�j�

�A9�

on the graph without variable i, yielding a CA�1� computa-
tion of Cjn

�i�. This results in improved CA�2� estimates of

correlations via Eq. �A6� which simplifies greatly due to the
vanishing of odd moments, i.e.,



xi,xj

P�xi,xj�xixj = tij +



k��i\j

tikCjk
�i�

1 + 

k�l��i

tiktilCkl
�i�

. �A10�

�1� M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 �2001�.
�2� M. Mézard and G. Parisi, J. Stat. Phys. 1, 111 �2003�.
�3� M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812

�2002�.
�4� J. S. Yedidia, W. T. Freeman, and Y. Weiss, Understanding

Belief Propagation and its Generalizations in Exploring Arti-
ficial Intelligence in the New Millennium �Morgan Kaufmann,
San Francisco, CA, 2003�; Advances in Neural Information
Processing Systems 13 �MIT Press, Cambridge, MA, 2000�,
pp. 689–695.

�5� R. McEliece, D. MacKay, and J. Cheng, IEEE J. Sel. Areas
Commun. 16, 140 �1998�.

�6� A. Montanari and T. Rizzo, J. Stat. Mech.: Theory Exp. 2005,
P10011 �2005�.

�7� M. Chertkov and V. Y. Chernyak, Phys. Rev. E 73, 065102

�2006�.
�8� G. Parisi and F. Slanina, J. Stat. Mech.: Theory Exp. 2006,

L02003 �2006�.
�9� E. Marinari and R. Monasson, J. Stat. Mech.: Theory Exp.

2004, P09004 �2006�.
�10� J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-

works of Plausible Inference �Morgan Kaufmann, San Fran-
cisco, CA, 1988�.

�11� D. J. Mackay, Information Theory, Inference, and Learning
Algorithms �Cambridge University Press, Cambridge, UK,
2003�.

�12� A. Pelizzola, J. Phys. A 38, R309 �2005�.
�13� V. Gomez, J. Mooij, and B. Kappen, e-print arXiv:cs.AI/

0612109.
�14� J. Mooij and B. Kappen, e-print arXiv:cs.AI/0612030.

CAVITY APPROXIMATION FOR… PHYSICAL REVIEW E 76, 011102 �2007�

011102-9


