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Abstract.
Non-time reversible phonobreathers are non-linear waves that can transport energy in coupled oscillator

chains by means of a phase-torsion mechanism. In this paper, the stability properties of these structures
have been considered. It has been performed an analytical study for low-coupling solutions based upon the
so called multibreather stability theorem previously developed by some of the authors [Physica D 180 235].
A numerical analysis confirms the analytical predictions and gives a detailed picture of the existence and
stability properties for arbitrary frequency and coupling.
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1. Introduction

One of the subjects where a great deal of attention has been focused in the last two decades is the dynamics
of nonlinear lattices. Intrinsic localized modes or discrete breathers is one of the most outstanding structures
that arise in those lattices [1, 2]. Discrete breathers are periodic and localized solutions whose existence is
allowed by the interplay between discreteness and nonlinearity. The existence of those structures in networks
of anharmonic oscillators (also known as Klein-Gordon lattices) was firstly proven at 1994 by MacKay and
Aubry [3]. They established that discrete breathers can be continued from the anti-continuous limit (i.e. the
limit where there is no coupling between the oscillators) to finite coupling as long as no integer multiple of
the breather frequency resonates with the linear modes in the phonon band.

This theorem also demonstrates the existence of breathers with more than one excited sites, dubbed as
multibreathers. These multibreathers receive special names in some cases; for instance, breathers with all
their sites excited receive the name of phonobreathers. If all but one of the sites are excited the multibreather
is called a dark breather [4], in analogy to the dark solitons existing in the Discrete Nonlinear Schrödinger
(DNLS) equation [5, 6].

In order to observe experimentally discrete breathers, they have to be stable. The stability of one-site
breathers (i.e. breathers with only one excited site) was firstly proven in [7, 8]. It was not until 2003 where
some of the authors of the present paper developed a method for determining the stability or instability of
many kinds of multibreathers [9, 10] based on the Aubry’s band theory developed in Ref. [7]. An alternative
approach, introduced in [11], is based in previous work by MacKay et al [12, 13, 14]. Recently, the equivalence
between both approaches has been proven [15].

Most of theoretical work related to discrete breathers has been carried on time-reversible solutions of
Hamiltonian lattices. Non-time-reversible solutions have mostly been considered in dissipative lattices [16,
17, 18, 19], which have many experimental applications in chains of coupled pendula [20], micromechanical
arrays [21], transmission lines [22, 23] and Josephson junction arrays [24, 25].

However, there have been very few approaches to non-time-reversible breathers or multibreathers in
Hamiltonian lattices. The existence of one of such solutions was firstly proven in the pioneer work of
MacKay and Aubry [3]. It was restricted to phonobreathers where there is a constant phase difference
between adjacent sites. These solutions can transport energy by means of phase torsion and can be viewed
as nonlinear phonons or phasons. Later on, Aubry [7] demonstrated the existence of a generic non-time-
reversible breather, independent on the excited sites. The proof was also extended to inhomogeneous lattices
(e.g. with vacancies) and vortices. It was also proven that phonobreathers with phase torsion generate a
stationary flux, and that time-reversible phonobreathers cannot transport energy. Finally, Cretegny and
Aubry numerically demonstrate [26, 27] the existence of non-time-reversible phonobreathers in homogenous
and inhomogeneous (with vacancies) 1-D lattices and vortices and breather “rivers” (i.e. percolating clusters
of breathers connecting two boundaries submitted to phase torsion) in 2D square lattices. They also sketch
some properties of the flux and its stability in 1D lattices. Further applications of this theory can be found
in many publications on discrete vortices in DNLS [28, 29, 30, 31, 32] and Klein-Gordon [15, 33] lattices.

The aim of this paper is twofold. On the one hand, we will prove by making use of the techniques
developed in [9, 10], a result mentioned in passing on Ref. [26]: the stability of phonobreathers depends on
the phase difference between adjacent sites and the phonobreather frequency. On the other hand, we will
make an analysis of the stability and flux dependence on the system parameters for two kind of potentials
in Klein-Gordon lattices, checking the validity of the analytical predictions.

The paper is organized as follows: in Section 2 we introduce the model equations; section 3 deals with
the analytical results regarding the stability for low coupling; in order to check these results, we make an
exhaustive numerical analysis of the existence and stability of phonobreathers at finite coupling in Section
4; finally, we present our conclusions and some possible extension of this work in Section 5.
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2. Model setup

2.1. Dynamical equations and energy flux

We a consider a Klein–Gordon chain of oscillators with nearest-neighbours harmonic coupling. The dynamical
equations are of the form:

ün + V ′(un) + ε(2un − un+1 − u−1) = 0 n = 1, . . . , N (1)

where the variables un are the displacements with respect to the equilibrium positions, V (un) is the on–site
potential, N is the number of oscillators, and ε > 0 is the coupling constant.

We consider two paradigmatic cases of on-site potentials: Morse (soft) potential

V (u) =
1

2
[exp(−u)− 1]2 (2)

and ϕ4 (quartic) hard potential

V (u) =
1

2
u2 +

1

4
u4 (3)

We look for non-time-reversible solutions of the dynamical equations (1) with all the particles excited,
so that the difference between the phases of the temporal oscillations of two nearest-neighbours lattice sites
is a constant α. Thus, there is a phase torsion between the boundaries of the lattice of value τ = Nα. In
order to fit the periodic boundary conditions, τ = 2πm with m ∈ Z, and, in consequence, α = 2πm/N .
Hence, we are dealing with an anharmonic plane wave (or a phonobreather) with a wave number equal to α
that transmits an energy flux along the chain of oscillators [26].

Let us remark the similarities of non-time-reversible phonobreathers with q-breathers, which are localized
solutions in the reciprocal space (see [34] for FPU and [35] for DNLS lattices). q-breathers can be generally
considered as the superposition of a finite number of normal modes. The solutions considered in the present
paper, i.e. phonobreathers, are also localized in the reciprocal space, so they can be cast as a special case of
q-breathers, consisting only of a normal mode characterized by the wavenumber α.

In order to calculate phonobreather solutions we make use of methods based on the anti-continuous
limit [3, 36], that is, an orbit of frequency ωb for each isolated oscillator is calculated and the coupling
constant is subsequently varied with a path-following (Newton-Raphson) method. In this paper, we have
used a Fourier space implementation of the dynamical equations.

Fourier space methods are based on the fact that the solutions are Tb-periodic (For a detailed explanation
of these methods, the reader is referred to Refs. [37, 38, 39]). Thus, they can be expressed in terms of a
truncated Fourier series expansion:

un(t) =

km∑
k=−km

zk,n exp(ik(ωbt+ α)) (4)

with km being the maximum of the absolute value of the running index k. In the numerics, km has been
chosen as 13. After the introduction of (4), the dynamical equations (1) transform into a set of N×(2km+1)
algebraic equations where the variables are Z ≡ {zk,n}:

Fk,n ≡ −ω2
bk

2zk,n + Fk[V
′(un)] + ε(2zk,n − zk,n−1 − zk,n+1) = 0 (5)

Here, Fk denotes the Discrete Fourier Transform:

Fk[V
′(un)] =

1

2km + 1

km∑
j=−km

V ′(u(tj)) exp(−ikωbtj), (6)
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Figure 1. Position un(t) and linear momentum pn(t) = u̇n(t) profiles (left panel) and time evolution (right
panel) for a phonobreather with ωb = 0.8, ε = 0.05, α = 2π/3 and a Morse potential. Different curves in
right panels stand for different lattice sites. Notice that there are only 3 curves in those panels because this
is the spatial periodicity of the phonobreather.

where tj is a sample of times that must be chosen equally spaced:

tj =
2πj

ωb(2km + 1)
, j = −km, . . . ,+km, (7)

and un(tj) is calculated from the Fourier coefficients zk,n by means of the Inverse Discrete Fourier Transform:

un(tj) =

km∑
k=−km

zk,n exp(ikωbtj). (8)

Fourier space methods provide with an analytical form of the Jacobian J ≡ ∂F/∂Z, whose elements
are {∂Fk,n/∂zk′,n′}. Figs. 1 and 2 show the profiles and time evolution of two examples of phonobreathers
‡ with different phases and potentials.

Phonobreathers can transport energy by means of the phase torsion mechanism, and consequently, there
is a stationary energy flux as long as α ̸= 0, π [7]. With the aid of the Fourier series expansion, the energy
flux can be expressed as:

Jn→m = −Jm→n =
ϵ

Tb

∫ Tb

0

un(t)u̇m(t)dt = −iωbϵ
∑
k

kzk,nz−k,m (9)

Phonobreathers are characterized by a constant energy density at each lattice site. Thus, it must be
fulfilled that zk,n+1 = zk,n exp(ikα) with zk,n = z∗−k,n and the flux between neighbouring sites is homogeneous
and fulfills:

J0 ≡ Jn,n+1 = 2ωbε
∑
k≥1

k|zk,n|2 sin(kα) ∀n (10)

‡ Notice that hereby we will omit, for simplicity, the non-time reversible character of the solutions
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Figure 2. Position un(t) and linear momentum pn(t) = u̇n(t) profiles (left panels) and time evolution
(right panel) for a phonobreather with ωb = 2, ε = 0.05, α = π/4 and a ϕ4 potential. Different curves in
right panels stand for different lattice sites. Notice that there are only 4 curves in those panels because this
is the spatial periodicity of the phonobreather.

2.2. Linear stability equations

In order to study the linear stability of phonobreathers, we introduce a small perturbation ξn to a given
solution un0 of Eq. (1) according to un = un0 + ξn. Then, the equations satisfied to first order on ξn is:

ξ̈n + V ′′(un0)ξn + ε(2ξn − ξn+1 − xn−1) = 0 , (11)

or, in a more compact form:

N ({u(t)})ξ = 0 , (12)

where N ({u(t)}) is known as the Newton operator. In order to study the orbital stability analysis of the
relevant solution, a Floquet analysis can be performed if there exists Tb ∈ R so that the map un(0) → un(Tb)
has a fixed point [7]. Then, the stability properties are given by the spectrum of the Floquet operator M0

(whose matrix representation is the monodromy) defined as:(
{ξn(Tb)}
{ξ̇n(Tb)}

)
= M0

(
{ξn(0)}
{ξ̇n(0)}

)
(13)

The 2N × 2N monodromy eigenvalues Λ = exp(iθ) are dubbed the Floquet multipliers. This operator
is symplectic and real, which implies that there is always a pair of multipliers (corresponding to the phase
and growth modes) at 1 and that the eigenvalues come in duplets {Λ, 1/Λ} if they are real or quadruplets
{Λ, 1/Λ,Λ∗, 1/Λ∗} if they are complex. Consequently, if the phonobreather is stable, all the eigenvalues lie
on the unit circle.

Equation (12) can be seen as the eigenequation of the Newton operator for the eigenvalue E = 0. Then,
the eigenequations for the Newton operator are:

N ({u(t)})ξ = Eξ → ξ̈n + V ′′(un0)ξn + ε(2ξn − ξn+1 − xn−1) = Eξn (14)

The Newton operator is periodic in time, and, consequently, its eigenvectors fulfill the Floquet-Bloch
theorem. This theorem implies that the E-eigenvalues spread bringing about a set of bands Eν = Eν(θ),
where θ can be chosen in the First Brioullin zone, i.e. θ ∈ [−π, π]. The set of eigenvalues Eν(θ) with θ real
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is denoted as the ν-th band. The bands are associated to stable solutions as long as θν ∈ R. The values of
θ(E) can be obtained by diagonalizing the matrix ME , which is obtained in a similar fashion to Eq. (13) but
integrating Eq. (14) for each value of E. The monodromy corresponds obviously to E = 0 and, consequently,
the Floquet arguments correspond to θν(0). Thus, a solution is stable if there are be 2N bands that either
cross the E = 0 axis or are tangent to it. More details on this theory, called Aubry’s band theory can be
found in Ref. [7].

3. Analytical results

In this section, we will show some analytical predictions about the stability of phonobreathers at low coupling.
To this end, we start by recalling previous results established by some of the authors for multibreathers with
an arbitrary number of excited sites and continue by applying these results to the prediction of the stability
properties of phonobreathers with Morse and ϕ4 potentials at low coupling.

3.1. Previous results

For the sake of completeness, we recall in this subsection some previous results on the Multibreathers Stability
Theorem (MST) proposed in Ref. [9]. For more details, the reader is also referred to Refs. [10, 15].

The MST refers to Klein-Gordon systems of the form (1) and estimates the displacement experienced
by Aubry’s bands when the coupling parameter ε is switched on.

Suppose that u0
n is a Tb-periodic solution at the anti–continuous limit (ε = 0), with p excited oscillators

and N − p ones at rest (u0
n = 0). At this limit, there are p degenerated bands tangent to the E = 0 axis at

(E, θ) = (0, 0). Their curvature is positive (negative) for soft (hard) on-site potentials. The MST can predict
the displacement of the minimum of this bands {∆E}p−1

i=0 = {E}p−1
i=0 = ε{λ}p−1

i=0 , with {λ} being the set of
eigenvalues for the perturbation matrix Q. The (non-zero) non-diagonal elements of the p× p perturbation
matrix Q in reduced form (see below) are defined as

Qn,n±1 = − 1

µn µn±1

∫ Tb/2

−Tb/2

u̇0
nu̇

0
n±1 dt (15)

with µn =
√∫ T/2

−T/2
(u̇0

n)
2dt. Only the indexes corresponding to the excited oscillators are considered and

they are renumbered them from 1 to p. If we considered all the oscillators, the matrix Q would be in full
form. Each oscillator at rest adds a row and a column of zeros and, therefore, a zero eigenvalue, which is
not relevant for the stability properties.

The diagonal elements are given by

Qn,n = −µn+1Qn,n+1 + µn−1Qn,n−1

µn
. (16)

With these definitions, we reproduce here the multibreather stability theorem:

Generalized MST Given a Klein–Gordon system, Eq. (1), a specific multibreather solution at zero coupling
{u0

n}, u(t) the corresponding solution at low and positive coupling, {λ}p−1
i=0 the eigenvalues of the reduced,

perturbation matrix Q, with only one zero, then:
The solution u(t) is stable if:
a) The on–site potentials are soft and there is not any positive value in {λi}p−1

i=0 .

b) The on–site potentials are hard and there is not any negative value in {λi}p−1
i=0 .
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We can summarize the stability properties in the following way. If S = 1 means stability and S = −1
instability, H = 1 corresponds to a hard on-site potential, and H = −1 to a soft one, and we define
sign(Q) = 1 if all the eigenvalues of Q but a zero one are positive and sign(Q) = −1 if they are negative
except for the zero one, then

S = H × sign(Q). (17)

It there are eigenvalues of different signs, the multibreather is always unstable. It is important to take into
account that there is always a zero eigenvalue due to a global phase mode. If there is more than one zero
eigenvalue, the stability theorem can only predict the instability in the case that there exists at least one
eigenvalue λ that leads to S = −1 in the previous equation (changing sign(Q) for sign(λ)), but not the
stability, as the 0–eigenvalue is degenerate.

3.2. Application to phonobreathers

We apply hereby the theory recalled in the previous subsection for the system given by Eq. (1). Consequently,
we must construct the reduced perturbation matrix Q whose elements are given by Eqs. (15) and (16). The
functions u0

n(t) that appear in those equations are the solutions of the isolated oscillators submitted to the
potentials V (un), i.e. the solutions of the equations:

ü0
n + V ′(u0

n) = 0, (18)

Let Inm be defined as:

In,m =

∫ Tb/2

−Tb/2

u̇0
n(t) u̇

0
m(t) dt , (19)

and the parameters ϑn,m as:

ϑn,m =
In,m√
In,nIm,m

. (20)

Substituting Eq. (4) into (19)-(20) and taking into account that the phase difference between
neighbouring sites α is constant, we get that

ϑn,n±1 ≡ ϑ =

∑
k

k2z2k cos(kα)∑
k

k2z2k
. (21)

With the aid of the ϑ parameter, the Q matrix can be written as

Q = ϑQ(R), (22)

where Q(R) is the Q matrix for a time-reversible phonobreather (i.e. with α = 0) in an homogeneous
lattice:

Q(R)
n,m = 2δn,m − (δm,n+1 + δn,n−1) , n = 1, . . . N (23)

Thus, the eigenvalues of our problem are given by λ = ϑλR with λR the eigenvalues of the time-reversible
lattice. These eigenvalues are given by λR,n = 4 sin2(nπ/N) with n = 0, . . . , N − 1 [9]; consequently:

λn = 4ϑ sin2
nπ

N
n = 0, . . . , N − 1. (24)

Thus, sign(λn) = sign(ϑ). Following Eq. (17), the phonobreather is stable for a soft potential if ϑ < 0
and, for a hard potential, if ϑ > 0. In the case of a symmetric on-site potential, z2,ν = 0,∀ν ∈ Z, and
consequently, ϑ(π/2) = 0.

We calculate below the expression of ϑ for a Morse and a hard ϕ4 potential:
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Figure 3. Stability and instability regions predicted by the MST for Morse (left) and ϕ4 (right) potentials.
Recall that, for the Morse (ϕ4) potential, instability implies ϑ < 0 (ϑ > 0).

3.2.1. Morse potential The orbits of Eq. (18) are given by [9]:

u(t) = log
1−

√
1− ω2

b cosωb t

ω2
b

, (25)

The Fourier coefficients are:

z0,n = log
1 + ωb

2ω2
b

; zk,n = − (−1)k+1

k

(
1− ωb

1 + ωb

)k/2

, (26)

Thus, we can write:

ϑ =

∑∞
k=1 r

k cos(kα)∑∞
k=1 r

k
, (27)

with

r =
1− ωb

1 + ωb
. (28)

Using [40], the sums can be performed, leading to:

ϑ =
(1− r)(cosα− r)

1− 2r cosα+ r2
. (29)

Thus,

sign(ϑ) = sign(cosα− r), (30)

In consequence, ϑ < 0 (i.e. the phonobreather is stable) if

cosα < r

(
=

1− ωb

1 + ωb

)
. (31)

The main consequence of this condition is that, for a given value of α, there exists a critical value of ωb

below which the phonobreather is unstable. This critical value is:

ωb,c =
1− cosα

1 + cosα
= tan2

α

2
(32)
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Consequently, as ωb < 1 for oscillators with Morse potential, if α > π/2 phonobreathers are always
stable, independently of the frequency.

Fig. 3(left) shows the predictions of the MST for the Morse potential as a function of ωb and α. For
ωb = ωb,c(α), ϑ = 0 and the degeneracy of λn cannot be removed; consequently, the MST would not be able
to predict the (in)stability in that case.

3.2.2. ϕ4 potential The orbit of an oscillator submitted to a ϕ4 hard potential is given by [41]:

un(t) =

√
2κ2

1− 2κ2
cn

(
ωbt√
1− 2κ2

, κ

)
=

√
2κ2

1− 2κ2
cn

(
2K(κ)

π
ωbt, κ

)
, (33)

where cn is a Jacobi elliptic function of modulus κn and K(κ) is the complete elliptic integral of the first
kind defined as:

K(κ) =

∫ π/2

0

dx√
1− κ2 sin2 x

. (34)

The breather frequency ωb is related to the modulus κ through:

ωb =
π

2
√
1− 2κ2K(κ)

. (35)

In order to calculate ϑ, it is better to use Eq. (20). Taking into account that ϑ depends only on the phase
difference, we can write:

Jnm =
4κ2K(κ)ω3

b

π(1− 2κ2)

∫ 2K(κ)

−2K(κ)

dx sn(x)sn(x+ a)dn(x)dn(x+ a), (36)

with a = 2K(κ)α/π. This integral can be evaluated applying [42, identity 171]:

κ2sn(x)dn(x)sn(x+ a)dn(x+ a) =

−cs(a)ns(a)(1 + dn2(a)) + cs(a)ns(a)(dn2(x) + dn2(x+ a))−
ds(a)(cs2(a) + ns2(a))[Z(x+ a)− Z(x)− Z(a)], (37)

where Z(x) is the Jacobian elliptic Z function [43]. Then, the value of ϑ is given by:

ϑ = 3
cs(a)ns(a)[2E(κ)−K(κ)(1 + dn2(a))]− ds(a)(cs2(a) + ns2(a))Z(a)

(−1 + 2κ2)E(κ) + (1− κ2)K(κ)
(38)

where E(κ) is the complete elliptic function of the second kind:

E(κ) =

∫ π/2

0

√
1− κ2 sin2 x dx . (39)

Three relevant values of ϑ correspond to α = π, α = π/2, α = 0 which lead to ϑ = 1, ϑ = 0 and ϑ = −1,
respectively. This result can be straightforwardly determined from Eq. (21). An analytic determination of
the sign of ϑ for other values of α is not possible. However, it is possible to visualize numerically that the
only zero of ϑ(α) takes place at α = π/2 being ϑ < 0 (ϑ > 0) for α < π/2 (α > π/2). In consequence,
phonobreathers with a ϕ4 hard potential are stable as long as α < π/2.

Fig. 3(right) summarizes the predictions of the MST for the ϕ4 potential as a function of ωb and α. For
α = π/2, ϑ = 0 and the degeneracy of λn cannot be removed, and consequently, the MST could not predict
(in)stability.
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Figure 4. Flux between nearest-neighbours for phonobreathers with α = 2π/3 and a Morse potential.
Dashed lines represent unstable solutions, for which the flux diverges above (below) a critical value of ε
(ωb).

4. Numerical results

The analytical results of the previous section concern to an infinitesimally small coupling. In this section,
we explore the existence and stability properties for an arbitrary coupling constant and determine the range
of validity of the predictions of the multibreather stability theorem.

4.1. Morse potential

Before undertaking the existence and stability analysis of the phonobreather, we show the properties of the
energy flux. Fig. 4 depicts the dependence of J0 with respect to ϵ and ωb for α = 2π/3; the qualitative
behaviour displayed in the figure is generic for any value of α. It is observed that for the Morse potential, the
flux increases (decreases) with the coupling constant (frequency). There is a critical value of ε (ωb) above
(below) which phonobreathers do not exist. For this critical value, the flux diverges. This fact is used in
Appendix A to calculate the dependence of the critical value of ε with ωb.

Additionally, a full stability analysis has been performed by varying ε and ωb for a Morse potential and
choosing two different values of the phase difference α = 2π/3 and α = 4π/9. In the first case, phonobreathers
are stable for small ε and become unstable above a critical value of ε. In the second case, phonobreathers
are unstable for small ε as long as ωb > ωb,c; the MST predicts that ωb,c = 0.7041, which fits quite well with
the numerics; in addition, for large enough ε, the phonobreather becomes stable, losing the stability again
when ε is increased further. As explained above, phonobreathers cease to exist above a critical value of ε
because the flux diverges. This critical value of ε has been calculated in Eq. (A.6):

εc =
ω2
b

4 sin2(α/2)
(40)

Fig. 5 depicts the existence and stability ranges for phonobreathers with the above mentioned parameters
whereas Fig. 6 shows the dependence with respect to ε of the arguments and moduli of Floquet multipliers
for several examples. From these figures, it can be deduced that instabilities and stabilities arise by means of
cascades of Neimark–Sacker bifurcations (also known as Krein crunches). An analysis of the dynamics shows
that those instabilities lead to the disappearance of the phase torsion and the time and spatial periodicities
of the phonobreathers.
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Figure 5. (ε-ωb) plane showing the existence and stability of phonobreathers with α = 4π/9 (left) and
α = 2π/3 (right) in a Morse potential. Dashed line in left panel corresponds to the MST prediction (i.e.
stable at the right of the line and unstable at the left) for low coupling.

We have checked the analytical predictions of MST regarding to Aubry’s bands displacement. To this
end, we show in Fig. 7 the bands for a phonobreather with small ε whereas Fig. 8 shows the comparison
of the predicted vertical displacement given by the MST with the numerical value. We can observe that,
contrary to time-reversible multibreathers (where the displacement is purely vertical), there is a diagonal
movement of the bands. In addition, there is a horizontal splitting of the bands that preserves the mirror
symmetry of the bands with respect to E-axis. It is also found an excellent agreement with the analytical
predictions even for high coupling when α = 2π/3 (the displacement is almost lineal), whereas for α = 4π/9
there is a serious discrepancy as the bands displacement is non-monotonic and non-linear.

4.2. Hard ϕ4 potential

The analysis of the previous case can also be done for the hard ϕ4 potential. We start by showing in Fig. 9
the properties of the flux for α = π/4 and α = 3π/2; the qualitative behaviour displayed in the figure is
generic for any value of α. Contrary to the Morse case, the flux has a non-monotonical behavior, increasing
with ε for small coupling and decreasing for large coupling; additionally, the flux is zero for zero coupling
and for a critical value of ε. However, the flux increases with the frequency. As in the Morse case, this
behaviour allowed us to calculate the critical coupling as a function of the frequency, as shown in Appendix
A.

Let us show the results regarding to the stability. Analogously to the time-reversible breathers, there
exist no stability exchange bifurcations and the stability for any arbitrary ε is the same as for small coupling
except for α = π/2. Thus, for α > π/2 (α < π/2), phonobreathers stability is the same as in the α = π
(α = 0) case. The only unknown appears at α = π/2, where the multibreathers stability theorem fails. In
that case, numerical calculations demonstrate that the stability range depends both on ε and ωb. Fig. 10
displays the dependence of the Floquet multipliers with respect to ε for α = 2π/3, α = π/2 and α = π/4.
In all cases, for a given ωb, there is a critical value of ε where the continuation fails. At this value the
flux vanishes, contrary to the Morse potential, for which the flux diverges. This critical value of ε has been
calculated in Eq. A.5:

εc =
ω2
b − 1

4 sin2(α/2)
(41)
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Figure 6. Dependence of the Floquet multipliers with respect to ε for phonobreathers in a Morse potential.
Parameters are: ωb = 0.68 and α = 4π/9 (top panels), ωb = 0.8 and α = 4π/9 (middle panels) and ωb = 0.8
and α = 2π/3 (bottom panels).
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(right). In both cases, ωb = 0.8. Dashed lines correspond to the MST predictions and full lines to the
numerical values. Solutions at left, where the discrepancy is high, are unstable for small but finite coupling.

Fig. 11 shows the existence range for those values of α. It can be deduced that the existence range is
enlarged when α decreases. Besides, for α = π/2 it is observed that the stability properties depends on the
frequency and coupling and that phonobreathers are always unstable for ωb ≤ 3.

Fig. 12 and Fig. 13 show, respectively, examples of bands and the MST predictions, for α = 2π/3
and α = π/4. There is an excellent agreement of the numerical results with the analytical predictions.
Additionally, Fig. 14 focuses on the α = π/2 case with ωb = 2. From the last figure, we can observe that the
first and second minima of the bands adjust respectively to the parabolas−0.015509ε2 and−0.056476ε2. This
fact confirms that a second order perturbation theory is needed in order to predict the stability properties
for α = π/2.
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5. Conclusions

The study carried out in this paper has been twofold: on the one hand, analytical predictions on the
stability of non-time reversible phonobreathers has been established by making use of the multibreathers
stability theorem; on the other hand, a numerical study on the existence and stability properties of those
phonobreathers has been performed.

The multibreathers stability theorem predicts that there is a critical value of the phase difference in
phonobreathers that separates stable and unstable states. This critical value depends on the phonobreather
frequency for lattices with harmonic coupling and Morse on-site potential whereas, for the ϕ4 potential, the
critical value is π/2 and does not depend on the frequency. At this particular value of the phase, the theorem
cannot make any prediction about the (in)stability.

The analytical findings have been confirmed by means of numerical analysis, showing in addition that
the stability changes above a given value of the coupling constant. It has also been confirmed that, in most
cases, the Aubry’s band displacement predicted by the multibreather stability theorem for small coupling,
is valid even for relatively high coupling. Apart from this, it has been observed that phonobreathers cease
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Figure 10. Dependence of the Floquet multipliers with respect to ε for phonobreathers in a ϕ4 potential.
Parameters are: ωb = 2 and α = 2π/3 (top panels), ωb = 2 and α = π/2 (middle panels) and ωb = 2 and
α = π/4 (bottom panels).
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to exist above a critical value of the coupling. This value coincides with a flux divergence for the Morse
potential or a flux vanishing for the hard ϕ4 potential. Finally, it has been found that for the ϕ4 potential
with α = π/2, the (in)stability depends on the frequency even for infinitesimally small coupling, being
additionally confirmed that a second-order perturbation theory is needed in order to predict the (in)stability
at this particular value of the phase.

The above mentioned results open new perspectives for future work. For instance, we have started to
study the properties of vortices in square lattices, which can be pictured as multibreathers with α = π/2. It
can be interesting to apply the multibreathers stability theorem to two structures considered by Cretegny and
Aubry: (i) breather “rivers” (percolating cluster) firstly and (ii) phonobreather with vacancy sites. Finally,
we have also started to study the effect of long-range interactions in the stability of non-time reversible
structures.
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Appendix A. Calculation of the critical coupling

In this appendix we calculate the critical value of the coupling parameter ε for the on-site potentials
considered in the paper, i.e. the Morse and the ϕ4 potentials, by making use of the rotating wave
approximation (RWA) (see e.g. [44]). This method consists in considering all the Fourier coefficients zero
but the first one, as this is usually considerably larger that the other coefficients. The RWA gives often
surprisingly good results, taken in account its simplicity.

Let us consider equation Eq. (1):

ün + V ′(un) + ε (2un − un+1 − un−1) = 0, n = 1, . . . , N. (A.1)

We can write un and V ′(un) in terms of their fourier coefficients zk,n and V ′
n,k as

un(t) =

km∑
k=−km

zk,n exp(ikωbt); V ′(un(t)) =

km∑
k=−km

V ′
k,n exp(ikωbt), (A.2)

As zk,n±1 = zk,n exp(±iα), substituting in Eq. (A.1) we obtain

−k2 ω2
b zk,n + V ′

k,n + 4ε zk,n sin
2(α/2) . (A.3)

Let us calculate the coefficients V ′
k,n for the generic ϕ4 potential V (un) = 1

2u
2
n + 1

4su
4
n. Then

V ′(un) = un + su3
n or

V ′(un) =

km∑
k=−km

zk,n exp(ikωbt) + s
( km∑

k=−km

zk,n exp(ikωbt)
)3

. (A.4)

As un(t) is real z1,n = z∗−1,n and, therefore, within the RWA un(t) = z1,n exp(iωbt) + z∗1,n exp(−iωbt) =
2|z1,n| cos(ωbt+ ϕ1,n) with ϕ1,n = arg(z1,n). For a given n = p, we can always set ϕ1,p = 0 by choosing the
appropriate time origin; that is z1,p ∈ R and z1,p = z−1,p. We only need to find the coefficients for the site
n = p as we can deduce any other one by using zk,n+p = zk,p exp(inα). Let us write u(t) ≡ up(t), zk ≡ zk,p
and so on, for simplicity. Then

V ′(u(t)) = (z1 exp(iωbt) + z1 exp(−iωbt)) + s(z1 exp(iωbt) + z1 exp(−iωbt))
3 =

z1(exp(iωbt) + exp(−iωbt)) + sz31(exp(iωbt) + exp(−iωbt))
3 =

z1(exp(iωbt) + exp(−iωbt)) + sz31(3[exp(iωbt) + exp(−iωbt)] + [exp(3iωbt) + exp(−3iωbt)]) =

(z1 + 3s z21)(exp(iωbt) + exp(−iωbt)) + sz31(exp(3iωbt) + exp(−3iωbt)) .

Therefore, the coefficient of exp(iωbt) is V ′
1 = (z1 + 3s z21). Substitution in Eq. (A.3) for n = p

(omitted) gives −ω2
bz1 + (z1 + 3s z31) + 4εz1 sin

2(α/2) = 0 . This equation has two solutions z1 = 0 and
z1 = (−ω2

b + 1 + 4ε sin2(α/2)), which becomes also zero for the critical value of the coupling parameter ε
given by:

εc =
ω2
b − 1

4 sin2(α/2)
. (ϕ4potential) (A.5)

Therefore, z1,p ≡ z1 = 0 and so are z1,n and un within the RWA. The flux J0 also becomes zero, according
to Eq. (10). This result does not depends on the value of s, which measures de degree of nonlinearity of the
potential. As any hard symmetric potential can be approximated by the ϕ4 potential with some s > 0, εc is
a good approximation for all of them. However, for a soft symmetric potential s is negative, ωb < 1, and as
ε > 0 there is no value of the coupling that nullifies z1 and the flux cannot be nullified.
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For the Morse potential, the RWA approximations is not so useful. From the numerical results we
know that the critical coupling ε corresponds to a divergence of the flux J0, and therefore to a divergence
of un and its first fourier coefficient z1,n. Then, V ′(un) = 2(exp(−2un) − exp(−un)) tends to zero when
un → ∞ and so does V ′

1,n. By substitution in Eq. (A.3) for k = 1, neglecting V ′
1,n and simplifying z1,n we

get −ω2
b + 4ε sin2(α/2) = 0 and the critical coupling is

εc =
ω2
b

4 sin2(α/2)
. (Morse potential) (A.6)

We have not been able to deduce the reason why un becomes infinity.
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