We investigate the integrability of the SO(N) principal chiral model on a
half-line, and find that mixed Dirichlet/Neumann boundary conditions (as well
as pure Dirichlet or Neumann) lead to infinitely many conserved charges
classically in involution. We use an anomaly-counting method to show that at
least one non-trivial example survives quantization, compare our results with
the proposed reflection matrices, and, based on these, make some preliminary
remarks about expected boundary bound-states.Comment: 7 pages, Late