300 research outputs found

    The effects of economic integration on lesser developed countries.

    Get PDF

    Preeclampsia is associated with compromized maternal synthesis of long chain polyunsaturated fatty acids leading to offspring deficiency

    Get PDF
    Obesity and excessive lipolysis are implicated in preeclampsia (PE). Intrauterine growth restriction is associated with low maternal body mass index and decreased lipolysis. Our aim was to assess how maternal and offspring fatty acid metabolism is altered in mothers in the third trimester of pregnancy with PE (n=62) or intrauterine growth restriction (n=23) compared with healthy pregnancies (n=164). Markers of lipid metabolism and erythrocyte fatty acid concentrations were measured. Maternal adipose tissue fatty acid composition and mRNA expression of adipose tissue fatty acid–metabolizing enzymes and placental fatty acid transporters were compared. Mothers with PE had higher plasma triglyceride (21%, P<0.001) and nonesterified fatty acid (50%, P<0.001) concentrations than controls. Concentrations of major n−6 and n−3 long-chain polyunsaturated fatty acids in erythrocytes were 23% to 60% lower (all P<0.005) in PE and intrauterine growth restriction mothers and offspring compared with controls. Subcutaneous adipose tissue Δ−5 and Δ−6 desaturase and very long-chain fatty acid elongase mRNA expression was lower in PE than controls (respectively, mean [SD] control 3.38 [2.96] versus PE 1.83 [1.91], P=0.030; 3.33 [2.25] versus 1.03 [0.96], P<0.001; 0.40 [0.81] versus 0.00 [0.00], P=0.038 expression relative to control gene [square root]). Low maternal and fetal long-chain polyunsaturated fatty acid concentrations in PE may be the result of decreased maternal synthesis

    Insights into the transfer of silicon isotopes into the sediment record

    Get PDF
    The first δ30Sidiatom data from lacustrine sediment traps are presented from Lake Baikal, Siberia. Data are compared with March surface water (upper 180 m) δ30SiDSi compositions for which a mean value of +2.28‰ ±  0.09 (95 % confidence) is derived. This value acts as the pre-diatom bloom baseline silicic acid isotopic composition of waters (δ30SiDSi initial). Open traps were deployed along the depth of the Lake Baikal south basin water column between 2012 and 2013. Diatom assemblages display a dominance ( > 85 %) of the spring/summer bloom species Synedra acus var radians, so that δ30Sidiatom compositions reflect predominantly spring/summer bloom utilisation. Diatoms were isolated from open traps and, in addition, from 3-monthly (sequencing) traps (May, July and August 2012) for δ30Sidiatom analyses. Mean δ30Sidiatom values for open traps are +1.23‰ ±  0.06 (at 95 % confidence and MSWD of 2.9, n = 10). Total dry mass sediment fluxes are highest in June 2012, which we attribute to the initial export of the dominant spring diatom bloom. We therefore argue that May δ30Sidiatom signatures (+0.67‰ ±  0.06, 2σ) when compared with mean upper water δ30SiDSi initial (e.g. pre-bloom) signatures can be used to provide a snapshot estimation of diatom uptake fractionation factors (ϵuptake) in Lake Baikal. A ϵuptake estimation of −1.61 ‰ is therefore derived, although we emphasise that synchronous monthly δ30SiDSi and δ30Sidiatom data would be needed to provide more robust estimations and therefore more rigorously test this, particularly when taking into consideration any progressive enrichment of the DSi pool as blooms persist. The near-constant δ30Sidiatom composition in open traps demonstrates the full preservation of the signal through the water column and thereby justifies the use and application of the technique in biogeochemical and palaeoenvironmental research. Data are finally compared with lake sediment core samples, collected from the south basin. Values of +1.30‰ ±  0.08 (2σ) and +1.43‰ ±  0.13 (2σ) were derived for cores BAIK13-1C (0.6–0.8 cm core depth) and at BAIK13-4F (0.2–0.4 cm core depth) respectively. Trap data highlight the absence of a fractionation factor associated with diatom dissolution (ϵdissolution) (particularly as Synedra acus var radians, the dominant taxa in the traps, is very susceptible to dissolution) down the water column and in the lake surface sediments, thus validating the application of δ30Sidiatom analyses in Lake Baikal and other freshwater systems, in palaeoreconstructions

    Climatic change in Central Asia during MIS 3/2: a case study using biological responses from Lake Baikal

    Get PDF
    A Marine Isotope Stage (MIS) 3/early MIS 2 section from a structural high along the east coast of the North Basin of Lake Baikal was analysed for diatoms, C/N ratios, and organic carbon isotope ratios. Diatoms were present throughout MIS 3 and early MIS 2, with high concentrations of the planktonic taxa Cyclotella sp. c.f. gracilis between 54 and 51.5 kyr BP indicating relatively warm, interstadial, conditions. Following a %TOC inferred climatic cooling between 43.2 and 39.1 kyr BP, evidence of a more muted δ13C(organic) and %TOC inferred climatic warming from c. 39.1–34.7 kyr BP coincides with a period of very high diatom concentrations, indicating high aquatic productivity, at the Buguldeika Saddle in the South Basin of Lake Baikal. No evidence exists for a ‘Kuzmin’ catchment erosional event in the North Basin during MIS 3. This, however, may reflect the location of the coring site away from major riverine inputs. Abrupt climatic cooling at the culmination of both warm phases in the North Basin are associated, on the basis of the palaeomagnetic age-model and correlations to existing sites in Lake Baikal, with the initiation of Heinrich events 5 (c. 50 kyr BP) and 4 (c. 35 kyr BP), respectively, in the North Atlantic. The amount of organic material declines across the MIS 3/MIS 2 transition while constant C/N ratios suggest organic material to be predominantly derived from phytoplankton. An increase in δ13C(organic) at the MIS 3/MIS 2 transition may therefore indicate changes in aquatic productivity, pCO2 or the inorganic carbon pool

    An experiment to assess the effects of diatom dissolution on oxygen isotope ratios

    Get PDF
    Rationale: Current studies which use the oxygen isotope composition from diatom silica (δ18Odiatom) as a palaeoclimate proxy assume that the δ18Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ18Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. Methods: Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ18O values using step-wise fluorination and isotope ratio mass spectrometry. Results: Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ18Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). Conclusions: We have shown that dissolution can have a small negative impact on δ18Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ18Odiatom values, especially when interpreting variations in these values of <1‰

    Constraining the MSSM with universal gaugino masses and implication for searches at the LHC

    Full text link
    Using a Markov chain Monte Carlo approach, we find the allowed parameter space of a MSSM model with seven free parameters. In this model universality conditions at the GUT scale are imposed on the gaugino sector. We require in particular that the relic density of dark matter saturates the value extracted from cosmological measurements assuming a standard cosmological scenario. We characterize the parameter space of the model that satisfies experimental constraints and illustrate the complementarity of the LHC searches, B-physics observables and direct dark matter searches for further probing the parameter space of the model. We also explore the different decay chains expected for the coloured particles that would be produced at LHC.Comment: 29 pages, 11 figure

    Spatial differences in dissolved silicon utilisation in Lake Baikal, Siberia: examining the impact of high diatom biomass events and eutrophication

    Get PDF
    Recent research has highlighted how Lake Baikal, Siberia, has responded to the direct and indirect effects of climate change (e.g., ice-cover duration), nutrient loading, and pollution, manifesting as changes in phytoplankton/zooplankton populations, community structure, and seasonal succession. Here, we combine and compare= analyses of chlorophyll a (an estimate of total algal biomass), carotenoid pigments (biomarkers of algal groups), and lake water silicon isotope geochemistry (d30SiDSi) to differentiate spatial patterns in dissolved silicon (DSi) uptake at Lake Baikal. A total of 15 sites across the three basins (south, central, and north) of Lake Baikal were sampled in August 2013 along a depth gradient of 0–180 m. Strong, significant correlations were found between vertical profiles of photic zone DSi concentrations and d30SiDSi compositions (r 5 20.81, p < 0.001), although these are strongest in the central basin aphotic zone (r 5 20.98, p < 0.001). Data refute the hypothesis of DSi uptake by picocyanobacteria. Algal biomass profiles and high surface d30SiDSi compositions suggest greater productivity in the south basin and more oligotrophic conditions in the north basin. d30SiDSi signatures are highest at depth (20 m) in central basin sites, indicating greater (10–40%) DSi utilization at deep chlorophyll maxima. DSi limitation occurs in the pelagic central basin, probably reflecting a high diatom biomass bloom event (Aulacoseira baicalensis). Meanwhile in the more hydrologically restricted, shallow Maloe More region (central basin), both high d30SiDSi compositions and picocyanobacteria (zeaxanthin) concentrations, respectively point to the legacy of an “Aulacoseira bloom year” and continuous nutrient supply in summer months (e.g., localized eutrophication)

    Lake Baikal isotope records of Holocene Central Asian precipitation

    Get PDF
    Climate models currently provide conflicting predictions of future climate change across Central Asia. With concern over the potential for a change in water availability to impact communities and ecosystems across the region, an understanding of historical trends in precipitation is required to aid model development and assess the vulnerability of the region to future changes in the hydroclimate. Here we present a record from Lake Baikal, located in the southern Siberian region of central Asia close to the Mongolian border, which demonstrates a relationship between the oxygen isotope composition of diatom silica (δ18Odiatom) and precipitation to the region over the 20th and 21st Century. From this, we suggest that annual rates of precipitation in recent times are at their lowest for the past 10,000 years and identify significant long-term variations in precipitation throughout the early to late Holocene interval. Based on comparisons to other regional records, these trends are suggested to reflect conditions across the wider Central Asian region around Lake Baikal and highlight the potential for further changes in precipitation with future climate change

    The transfer of diatoms from freshwater to footwear materials: An experimental study assessing transfer, persistence, and extraction methods for forensic reconstruction

    Get PDF
    In recent years there has been growing interest in environmental forms of trace evidence, and ecological trace evidence collected from footwear has proved valuable within casework. Simultaneously, there has been growing awareness of the need for empirical experimentation to underpin forensic inferences. Diatoms are unicellular algae, and each cell (or ‘frustule’) consists of two valves which are made of silica, a robust material that favours their preservation both in sediments and within forensic scenarios. A series of experiments were carried out to investigate the transfer and persistence of diatoms upon common footwear materials, a recipient surface that has historically been overlooked by studies of persistence. The effectiveness of two novel extraction techniques (jet rinsing, and heating and agitation with distilled water) was compared to the established extraction technique of hydrogen peroxide digestion, for a suite of five common footwear materials: canvas, leather, and ‘suede’ (representing upper materials), and rubber and polyurethane (representing sole materials). It was observed that the novel extraction technique of heating and agitation with distilled water did not extract fewer diatom valves, or cause increased fragmentation of valves, when compared to peroxide digestion, suggesting that the method may be viable where potentially hazardous chemical reactions may be encountered with the peroxide digestion method. Valves could be extracted from all five footwear materials after 3 min of immersion, and more valves were extracted from the rougher, woven upper materials than the smoother sole materials. Canvas yielded the most valves (a mean of 2511/cm2) and polyurethane the fewest (a mean of 15/cm2). The persistence of diatoms on the three upper materials was addressed with a preliminary pilot investigation, with ten intervals sampled between 0 and 168 h. Valves were seen to persist in detectable quantities after 168 h on all three upper materials. However, some samples produced slides with no valves, and the earliest time after which no diatom valves were found was 4 h after the transfer. Analysis of the particle size distributions over time, by image analysis, suggests that the retention of diatoms may be size-selective; after 168 h, no particles larger than 200 μm2 could be found on the samples of canvas, and > 95% of the particles on the samples of suede were less than or equal to 200 μm2. A pilot investigation into the effects of immersion interval was carried out upon samples of canvas. Greater numbers of valves were extracted from the samples with longer immersion intervals, but even after 30 s, > 500 valves could be recovered per cm2, suggesting that footwear may be sampled for diatoms even if the contact with a water body may have been brief. These findings indicate that, if the variability within and between experimental runs can be addressed, there is significant potential for diatoms to be incorporated into the trace analysis of footwear and assist forensic reconstructions
    corecore