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Abstract 

Rational:  Current studies which use the oxygen isotope composition from diatom silica 

(Odiatom) as a palaeoclimate proxy assume that Odiatom reflects the isotopic composition 

of the water in which the diatom formed. However, diatoms dissolve post mortem, 

preferentially losing less silicified structures in the water column and during/after burial into 

sediments. The impact of dissolution on Odiatom and potential misinterpretation of the 

palaeoclimate record is evaluated.  

Methods: Diatom frustules covering a range of ages (6 samples from the Miocene to the 

Holocene), environments and species were exposed to a weak alkaline solution for 48 days at 

two temperatures (20ºC and 4ºC), mimicking natural dissolution post mucilage removal. 

Following treatment, dissolution was assessed using Scanning Electron Microscope images 

and a qualitative diatom dissolution index. Diatoms were subsequently analysed for O 

using Step Wise Fluorination and Isotope Ratio Mass Spectrometry.  
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Results: Variable levels of diatom dissolution were observed between the 6 samples, in all 

cases higher temperatures resulted in more frustule degradation. Dissolution was most 

evident in younger samples, likely as a result of the more porous nature of the silica. The 

degree of diatom dissolution does not directly equate to changes in isotope value; Odiatom 

was however lower after dissolution, but in only half the samples was this reduction outside 

the analytical error (2ı analytical error = 0.46‰). 

Conclusions: We show that dissolution can have a small negative impact on Odiatom 

causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental 

temperatures. These findings need to be considered in palaeoenvironmental reconstructions 

using Odiatom, especially when interpreting variations in Odiatom of <1‰.  

Keywords: Palaeoclimate, biogenic silica, oxygen isotopes, dissolution, sedimentation 

Introduction 

Use of the oxygen isotope composition of biogenic silica (most often diatom silica; Odiatom) 

in palaeoclimate reconstructions from both lake and ocean studies is increasing.[1,2] Diatom 

O offers an alternative to more traditional carbonate O analysis, especially in 

environments where carbonates are not well preserved. For example, Pike et al., (2013)[3] 

used Odiatom to reconstruct the amount of melting along the Antarctic Peninsula through the 

Holocene, and Mackay et al., (2013)[4] use Odiatom from Lake Baikal to understand the 

extent of Northern Hemisphere climate forcing over central Asia during the Last Interglacial. 

These studies assume that the Odiatom is fixed in the frustules during formation and that the 

signal is not subsequently altered post mortem by interactions with isotopically different 

fluids, or by dissolution, either during sinking or in the sediments. This assumption, however, 

is inconsistent with kinetic theory, as equilibrium is dynamic, and mass transfer continues at 

the mineral-fluid interface even after the diatom frustule attains equilibrium with the bulk 

fluid. This is especially pertinent to biogenic silica because of its hydrous nature 

(SiO2.nH2O).[5,6]
 

 

The aim of the experiments reported here was to assess the impact of post mortem biogenic 

silica dissolution and potentially re-equilibration on sedimentary diatom O, similar to 

investigations into the effect of dissolution on silicon isotopes in diatoms.[7] Diatoms often 

partially (or fully) dissolve post mortem during sinking and burial within the sediment record, 



 

 

causing the component of the frustule that remains to be only partially representative of the 

original.[8] We questioned if the isotope composition of the frustule may change through 

dissolution due to removal of the most easily dissolved components in diatoms of different 

age. One laboratory dissolution experiment (at pH 9 using NaOH) carried out by Moschen et 

al., (2006)[9] on modern diatoms observed isotope deviations of up to 6.9‰ due to 

dissolution, following the removal of the protective organic matter coating around the 

cultured frustule, whereas Dodd et al. (2012)[6] report a 7‰ shift from living to sedimentary 

diatoms, related to silicate maturation. To test more fully if such extreme fractionation may 

occur due to post burial dissolution (assessed by a visual dissolution index; c.f. Ryves et al., 

2006[10]), we carried out further experiments. We mimicked dissolution in the laboratory on a 

suite of monospecific and mixed diatom assemblage of different ages, from both marine and 

lacustrine environments, and dissolved them to different degrees over varying time and at two 

temperatures.  

 

Previous Studies 

 

Diatom dissolution experiments have previously been undertaken to assess structural changes 

in community composition[11,12,13] and alteration of oxygen and silicon isotope ratios[7,9] using 

a variety of reagents. These studies demonstrate that the removal of organic components and 

metal ions greatly accelerates dissolution through contact between the solution and the silica 

structure.[9] Even after the removal of the organic coating, Ryves et al., (2001)[13] found that 

partial dissolution took several weeks when conducted in distilled water at 25ºC buffered to 

pH 10. Dissolution rates are affected by several factors, including the silica concentration of 

the solution, pH and temperature of the solution[13] as well as the amount of diatom silica 

remaining and the proportion of this silica which is resistant to dissolution.[9] In natural 

sediments pore water chemistry is more important than ambient lake water conditions and 

dissolution is often greater in more open sediment structures. However, Flower & Ryves 

(2009)[14] found that preservation is better (i.e. less dissolution) at higher sediment 

accumulation rates and suggested this was due to rapid burial and build-up of silica saturation 

levels in pore water. 

 

Bulk dissolution rate in sediments is therefore not linear but decreases over time,[7,15] both as 

pore water concentrations rise to saturation but also as the assemblage specific surface area is 

reduced, slowing dissolution.[7] Within sediments, dissolution is greatest at the point of burial 



 

 

while the rate decreases in older sediments as a result of greater crystallinity in older 

diatoms.[16] At the scale of individual valves specific surface area is also important to 

dissolution rates, as valves dissolve their surface area to volume ratio changes altering the 

rate of dissolution.[12,13] Finally, the ultra-structure of the diatom frustule can also have 

significant effects on the rate of dissolution as susceptibility to dissolution is not uniform 

across the valve. Within the silica ultra-structure of the valve, a variety of bond geometries 

exist. Specifically the arrangement of silica and oxygen atoms may be denoted by Qn, where 

n denotes the number of silicon atoms connected to four bridging oxygen atoms.[17] For 

example Q4 denotes a silicon atom joined to four other silicon atoms via four bridging 

oxygen atoms (i.e. Si(OSi)4). Q3 therefore denotes a silicon atom connected to three other 

silicon atoms via three bridging oxygen atoms, with the fourth oxygen forming a hydroxyl 

group (i.e. (SiO) Si-OH). The majority of bonds present are typically either Q4 or Q3, leading 

to the ratio Q4/Q3 being quoted to indicate the hydration level.[17] Importantly, a higher Q4/Q3 

ratio gives a silica structure more resistance to dissolution, owing to the lower bond energy of 

the hydroxyl groups compared to the Si-O-Si bonds.[18]
 

 

Previous studies have tried to explain post mortem Odiatom variation, looking specifically at 

the effects of dissolution.[9,19] The study of Moschen et al., (2006)[9] involved sediment traps 

in Lake Holzmaar, Germany, to investigate changes in Odiatom during settling at different 

water depths (0-7 m and 20 m). Their results show an increase in Odiatom with depth, 

associated primarily with the re-suspension of older diatoms which had undergone significant 

levels of silicate maturation. Importantly, subsequent laboratory experiments conducted using 

buffered (pH 5.6 and pH 9) solutions and both cultured and natural diatoms (untreated, and 

cleaned of organic coatings using H2O2) found a Odiatom increase of up to +6.9‰ after two 

days at pH 9,[9] although no change was found in Odiatom in the lower pH solution. In the 

untreated samples, where the organic mucilage was retained, they found limited dissolution 

of biogenic silica and no oxygen isotope change.[9] The natural diatom assemblage underwent 

very little dissolution in comparison to the cultured diatoms, the “older” natural diatoms 

being more resilient to both dissolution and Odiatom change.[9,19] These results highlight the 

potential importance of dissolution in controlling Odiatom in diatom assemblages of 

different ages. 

  

Materials and Methods 



 

 

 

Six samples were selected (most of which had been previously analysed for Odiatom, Table 

1) that cover a range of sedimentary environments and species composition. From oldest to 

youngest, these were: 1) Burney California Diatomite (BFC) (Miocene lacustrine deposit), 2) 

North West Pacific Ocean (Pliocene marine deposit), 3) Bering Sea (Pliocene marine 

deposit), 4) Gil-Gil Kenya Diatomite (KFC) (Pleistocene lacustrine deposit), 5) Lake Baikal 

(Pleistocene lacustrine deposit), 6) Lake Challa (Pleistocene lacustrine deposit). All these 

samples would have undergone an unknown amount of prior dissolution during settling and 

burial. The samples had been previously cleaned and prepared for isotope analysis which 

removed any carbonate or siliclastic particles but also removed any remaining organic 

components (see original publications in Table 1). The six samples were sieved and cleaned 

of silt material until they contained over 90% diatom silica (visually assessed using either a 

Scanning Electron Microscope and/or a light microscope), with the exception of KFC which 

contained a significant proportion of clay which could not be removed during processing, and 

the Bering Sea sample, which contained up to 15% sponge spicules which were similar in 

size and density to the diatoms (see original publications in Table 1).  

 

Name Origin Age Description Taxa Reference /Supplied 
by 

BFC Shastra County, 
California, USA 

Miocene Lacustrine deposit 
Laboratory standard 

Aulacoseira spp. 
Stephanodiscus spp. 

Chapligin et al (2011) 
Leng and Slone 
(2008)/ NIGL* 
 

North West 
Pacific 
 

ODP site 882 
GS24-29 

Pliocene  
(2.8 Ma) 

Marine deposit Coscinodiscus radiatus Swann et al (2006) 

Bering Sea Site U1340 Pliocene 
(2.6-3.6 Ma) 
 

Marine deposit Coscinodiscus marginatus G.Swann 

KFC Gilgil, Kenya Pleistocene Lacustrine deposit 
Laboratory standard 
 

Aulacoseira spp. 
Stephanodiscus spp. 

Tyler et al (2006)/ 
NIGL* 

Lake Baikal Lake Baikal, 
Russia 

Pleistocene 
(120-127 
ka) 

Lacustrine deposit 
 

Aulacoseira skvortzowii 
Stephanodiscus grandis 
Stephinodiscus formosusvar 
minor 
 

Mackay et al (2013) 
Rioual and Mackay 
(2005) 

Lake Challa  Lake Challa, E. 
Africa 

Pleistocene 
(12-25 ka) 

Lacustrine deposit 
 

Gomphocymbella spp. 
Nitzschia spp. 

Barker et al (2013) 

* NERC Isotope Geosciences Facilities 

Table 1: List of samples used in the dissolution experiments; highlighting prominent assemblage taxa 

and sample supplier. 

 

 



 

 

The six samples were either near-monospecific or mixed diatom assemblages, the dominant 

species composition for each sample is summarised in Table 1. Prior to dissolution 

experiments, a subsample of each was analysed for į18O.  Further subsamples (25 mg) were 

placed in a 5% NaCO3 solution (250 ml, made up with deionised water, į18O = –7 ‰, pH c. 

11.5) to ensure silica did not become oversaturated during the experiment and to mimic 

natural dissolution post mucilage removal.[20] Dissolution was allowed to proceed for 48 days 

at two temperatures (20°C and 4°C) representing a range of temperatures including low 

temperatures found within bottom waters (and therefore sediments) of high latitude lakes and 

the oceans. The samples were kept in beakers with para film coverings to prevent evaporation 

and the samples were not stirred; the 20ºC experiment was conducted in a fume cupboard and 

the 4ºC in a fridge. A control subsample was taken from three of the diatom assemblages 

(BFC, North West Pacific and Bering Sea) and placed in de-ionised (DI) water for the 48 day 

period (pH c.7, 20ºC). The reactions were halted by filtering onto cellulose nitrate filters 

(3µm), washing in deionised water and drying at 40oC. To ensure that changes in Odiatom 

are not related to different rates of dissolution between species, qualitative assessment of 

diatom composition before and after dissolution was assessed using both light (LM) and 

scanning electron microscopes (SEM) and only minor changes in assemblage composition 

were identified, potentially related to heterogeneity across the viewing surface of the slide. 

For SEM imaging, samples were mounted on carbon tipped aluminium stubs and to achieve a 

better image quality, the samples were coated with gold using an Emitech K500X manual 

sputter coater. The coated stubs were subsequently imaged under an Hitachi S-3600N 

Scanning Electron Microscope, with a working distance of 15 mm and voltage of 15 Kv. The 

relative change in diatom dissolution state was then assessed for the dominant taxa in each 

sample using the dissolution stage classification of Ryves, (1994)[21] and the Diatom 

Dissolution index (DDI),[10,22] Equation 1.  

ܫܦܦ  ൌ σ ௡௦ೞసరೞసభ ൉ሺௌିଵሻே൉ሺௌ௠௔௫ିଵሻ         (Eq 1) 

 

Where n is the number of valves and S represents the stage of valve dissolution, N is the total 

number of classified valves. Smax is the highest stage that valves in the assemblage could 

reach if dissolution progressed to its end point; Smax thus varies between 2 and 4,[10] and here 

was 3 in all cases (see Table 2). The DDI enables the user to estimate the proportion of valves 

in a sample assemblage that are at the most dissolved state possible[10] resulting in a 



 

 

numerical value for sample dissolution, with 0 indicating perfect preservation and 1 

indicating the maximum dissolution possible for that species or assemblage if all species are 

included in the dissolution assessment[10]. Within each sample an area containing at least 100 

valves of the dominant species was imaged (between 500 and 600x magnification), two 

additional images at the same magnification were subsequently taken to verify the initial DDI 

count. Although only the most important species (by relative abundance) were assessed for 

dissolution (Table 2), the DDI based on dominant taxa is a good estimate of assemblage DDI, 

which is a weighted mean of individual species DDIs. Similarly, while all biogenic silica 

contributes to sample į18O, in these samples the dominant taxa account for most of the 

biogenic silica (by biovolume). Dissolution stages for the dominant taxa (Table 2) were 

initially established by comparison to dissolution sequences published for the same genus 

and/or morphology[22] and refined for each dominant taxon by identification of repeatable and 

distinct patterns in the valves under SEM/LM. 

 

 Stage 1 Stage 2 Stage 3 

Coscinodiscus 

spp. 

Girdle completely intact. Almost all 

areolae have vela intact. Almost all 

cellular mantle areolae have vela 

intact. 

 

 

 

 

 

 

 

Most central areolae have lost vela 

and become enlarged. Some cellular 

mantle areole vela have been lost. 

Girdle almost completely intact.  

 

Almost all areolae vela are lost, 

including all cellular mantle areolae 

vela. Girdle beginning to break 

down as areolae begin to coalesce.  

Gomphocymbella 

spp. 

Striae lineations clear and well 

preserved, puncta intact and mantle 

well preserved. Hypotheca and 

epitheca still together. 

 

 

 

 

 

 

Puncta enlarged, with dissolution 

beginning at ends of frustule. 

Hypotheca and epitheca may 

separate, although not in this image. 

Epitheca and hypotheca typically 

separated, with only the costae 

remaining. Commonly seen as 

‘skeleton’ type remains. 

Aulacoseira 

skvortzowii 

Mantle completely intact. Areole 

not enlarged, vela present on some 

species. No obvious signs of 

dissolution. 

 

 

 

Areolae beginning to enlarge and 

coalesce. No vela present. Holes 

may become apparent as the areole 

begin to coalesce more.  

Breakdown of frustule as areole 

coalesce more completely. Frustule 

commonly in multiple parts. 



 

 

Stephanodiscus 

formosus var 

minor 

Mantle intact with almost all 

marginal spines. Areolae remain 

separate and not overly enlarged. 

 

 

Partial loss of the mantle and 

spines. Areolae beginning to 

enlarge and even coalesce. 

Complete loss of mantle and 

marginal spines. Areolae enlarged 

with many coalescing. 

 

 

 

 

Stephanodiscus 

grandis 

 

 

 

 

Mantle mostly intact, girdle still 

present. 

 

 

 

 

 

 

 

 

 

 

Margin irregular - girdle may be 

mostly removed. Areolae enlarged 

and can coalesce.  

 

 

 

 

Margin dissolved, with breakage 

towards centre. Areolae enlarged, 

coalescing and breaking frustule. 

 

Table 2: SEM images of diatom dissolution stages for 5 of the prominent taxa recorded in the 

samples. Frustule degradation associated with dissolution can be clearly identified.  

After dissolution, Odiatom was determined using a Step Wise Fluorination (SWF) 

technique.[18] The initial SWF stages remove loosely bonded water (dehydration) and 

hydroxyl using a bromine pentafluoride (BrF5) reagent. The next stage involves a full 

reaction at 450ºC for 12 hours with an excess of reagent, causing the dissociation of the silica 

into O2 and Si (as SiF4). O2 is then liberated and converted to CO2 by exposure to graphite, 

whilst other products of the reaction (SiF4, BrF3) are trapped using liquid nitrogen and either 

analysed, e.g. Si, or disposed of.[18] The resultant CO2 gas was then analysed for O using a 

Thermo MAT 253 dual inlet isotope ratio mass spectrometer at the Stable Isotope Facility, 

British Geological Survey. Sample gas was calibrated against the BFC standard material 

which was in turn corrected to NBS28, į18
Odiatom is reported on the VSMOW scale. The DDI 

and į18O data are given in Table 3 and Figure 2. A 2ı error for the experiment was calculated 

based upon the mean standard deviation of duplicate analysis undertaken on all samples 

(including those pre-dissolution, in DI water for 48 days and those dissolved at 20 ºC and 4 

ºC for 48 days) and was calculated at 0.46‰, very similar to the 2ı error for repeat analysis 

of the BFC standard (from all experiments), 0.48‰.  

 

Results 

 

Dissolution 



 

 

Diatom dissolution was compared before (t = 0) and after the experiments (48 days at 4ºC 

and 20ºC) using the Diatom Dissolution Index as defined by Ryves et al., (2009)[22] (Figure 

1). Table 2 shows the typical stages of dissolution for major taxa.[22] All diatom samples had 

a pre-dissolution DDI of 0.1-0.3, while DDI for all samples after 48 days (at both 20ºC and 

4ºC) ranged between 0.1 and 0.7 (Figure 1). For all samples, apart from the Miocene aged 

BFC, DDI was most extensive after 48 days in the 5% Na2CO3 solution, and in the samples 

dissolved at 20ºC (compared to those at 4ºC), similar to results of Demarest et al., (2009).[9]
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Diatom Dissolution Index for all samples (in descending age order) under the three 

different dissolution experiments. Open circles show the DDI pre-dissolution, grey circles after 48 

days dissolution at 4ºC and black circles after 48 days at 20ºC.  

 

Isotope composition 

 

The Odiatom composition of the 6 diatom samples was analysed pre-dissolution, after 

dissolution for 48 days (at both 20ºC and 4ºC, pH c. 11), and (for comparison) three of the 

samples (BFC, North West Pacific and Bering Sea) after 48 days in only deionised water. 

Pre-dissolution Odiatom were between +26.92 and +42.79‰ (Figure 2). For the three 

samples left for 48 days in DI water, we observed little dissolution under SEM. Change in 

Odiatom from pre-dissolution values was within analytical error (0.46‰) for two of the 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BFC Bering sea NW Pacific KFC Biakal Challa

D
ia

t
o

m
 D

is
s
o

lu
t
io

n
 I

n
d

e
x

 

Miocene Pleistocene Pliocene 



 

 

samples (BFC, –0.09‰ and Bering Sea, –0.38‰) but was outside this for the North West 

Pacific sample (–0.99‰).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Change in į18O between pre-dissolution isotope values (diamonds) and the two stages of 

dissolution, 48 days dissolution at 4ºC (crosses) and 48 days at 20ºC (triangles). Control experiment 

(48 days in DI water) shown with black circles, error bars denote the analytical error (0.46‰). Change 

in DDI (grey bars) between pre dissolution values and values after 48 days dissolution at 20ºC.    

 

 į18O pre-
dissolution 
(‰) 

į18O after 48 
days at 4ºC 
(‰) 

į18O after 48 
days at 20ºC 
(‰) 

DDI pre-
dissolution 

DDI after 48 
days at 4ºC 

DDI after 48 
days at 20ºC 

BFC 28.88 28.86 28.59 0.08 0.09 0.10 
NW Pacific 42.79 41.95 41.55 0.15 0.22 0.30 
Bering Sea 39.10 38.05 37.84 0.16 0.23 0.36 
KFC 26.92 27.11 26.90 0.10 0.19 0.20 
Lake Baikal 29.88 30.54 29.12 0.29 0.52 0.69 
Lake Challa 39.39 39.54 39.04 0.09 0.40 0.46 
 

Table 3: į18O and Diatom Dissolution Index data for all samples pre-dissolution, after 48 days at 4ºC 

and after 48 days at 20ºC. Samples with a į18O change outside of error (0.46‰) are highlighted in 

bold. 

Of the six samples left to dissolve for 48 days at 4ºC, only the Bering Sea sample (change of 

–1.05‰) and the North West Pacific sample (–0.84‰ change) show a reduction in isotope 



 

 

value from the pre-dissolved material outside the sample analytical (2ı) error (average 

change in all samples = –0.15‰). The Lake Baikal sample shows a slight (but significant) 

increase Odiatom (+0.66‰) at this temperature. All samples from the 48 days at 20ºC 

experiment show lower Odiatom, and three exhibit a change outside of analytical error; the 

Bering Sea (–1.26‰), NW Pacific (–1.23‰) and Lake Baikal (–0.76‰), with average 

change in all samples of –0.65‰ (Figure 2).   

 

Discussion 

Diatom dissolution and oxygen isotope fractionation 

Isotope change during these experiments is potentially related to two different isotope 

fractionation processes. Firstly, the slow equilibrium oxygen isotope exchange between 

diatom silica and the surrounding water. This process occurs on the molecular level and takes 

a lot of time (or energy) to cause significant isotope exchange; it is therefore unlikely that this 

process could cause large changes in Odiatom over the short time period of these 

experiments. However, the second form of isotope fractionation is a kinetic process driven by 

the preferential dissolution of sections of the diatom frustule. This process occurs far more 

rapidly and thus therefore more likely to cause the isotope shifts observed here. 

Overall, the diatom dissolution experiments reported here show that, in general, the oldest 

diatoms are least affected by further experimental dissolution (Figure 1), as expected as 

biogenic silica ages geologically and becomes more crystalline.[5] However KFC 

(Pleistocene) is an exception, with lower levels of dissolution (DDI change = 0.1), although 

this likely still represents a substantial loss of diatoms (perhaps ~30% disappear as DDI rises 

from 0.1 to 0.2; see Ryves et al. 2006[10]). This might speculatively be related to clay 

contamination within the sample. Whilst differences in the extent of diatom dissolution 

occurred among the six samples corresponding to the sample age, changes in Odiatom appear 

de-coupled from the amount of dissolution (Figure 2 and Table 3). The change in DDI 

between assemblages prior to dissolution and after dissolution at 20ºC ranges from 0.01 

(BFC) to 0.39 (Lake Baikal), but this variation does not appear related to the Odiatom (linear 

regression, n = 6, r2 = 0.04). This dissimilarity between the change in diatom dissolution and 

the difference in isotope value indicates that there is no overarching relationship between 

diatom dissolution and Odiatom. The lack of correspondence between sample types may simply 

reflect differences in the source material, highlighting the potential roles of assemblage 



 

 

composition, sample age, the extent of prior diagenetic processing, taphonomic history as 

well as preferential dissolution in controlling how Odiatom changes during dissolution. 

Whilst the amount of dissolution is not directly related to the change in Odiatom and even 

though samples may dissolve in different ways due to their initial assemblage makeup our 

results demonstrate that dissolution almost always (one exception) causes a small negative 

shift in Odiatom; different from the large positive shifts in Odiatom described in cultured 

diatoms.[9] This is potentially because our experiments are an assessment of secondary 

(within sediment), rather than the primary (within water column) dissolution mimicked in 

Moschen et al., (2006).[9] 
 

 

Significance for palaeoenvironmental reconstruction  

The results of this study show that a change in Odiatom occurs in fossil samples with further 

induced diatom dissolution (Table 3). It should be noted that most diatoms will previously 

have undergone dissolution either during their settling through the water column[9] or at the 

sediment surface-water interface (or both;[10]) and that the impacts of this earlier dissolution 

cannot be tested here. At 20ºC, the fractionation related to simulated post-burial dissolution 

occurs outside of measurement error (–1.24‰, –1.26‰ and –0.76‰) for three of the six 

samples (NW Pacific, Bering Sea and Lake Baikal respectively, Table 3). However, such 

temperatures are unlikely to be representative of conditions within the sediments of many 

deep waters or high altitude/ latitude lakes, where carbonate deposits are rare. Therefore the 

colder, 4ºC experiment is likely more representative of the majority of natural lake and ocean 

sediment conditions.[8] This experiment showed smaller, but still significant (outside of 2ı 

error), changes in Odiatom (–1.05‰, –0.84‰ and +0.66‰) in the Bering Sea, NW Pacific 

and Lake Baikal samples respectively (Table 3). In our six samples dissolved at 4ºC, we 

observe a maximum isotope change related to dissolution of –0.59‰ (Bering Sea) beyond the 

analytical error (0.46‰).  

 

When compared with modern palaeoclimate reconstructions using Odiatom, even extreme 

dissolution of the sedimentary diatom material resulting in a <0.59‰ Odiatom shift would 

not always influence palaeoclimate interpretation. Several examples include; Barker et al., 

(2001)[23] interpret isotope shifts of <18‰ as changes in Holocene moisture balance from two 

Alpine lakes on Mt Kenya; Mackay et al., (2013)[4] describe shifts in į18Odiatom of up to 3‰ in 

the Last Interglacial sequence from Lake Baikal, indicative of changing strength of the 



 

 

Siberian High on regional hydrology. Other examples include Dean et al., (2013)[24] where 

they show changes of <20‰ from Nar Gölü in central Turkey related to lake freshening after 

intense snow melt; Shemesh et al., (2001)[25] describe changes of <3.5‰ from a lake in 

Swedish Lapland and interpret these as an indicator of changing air mass dominance through 

the Holocene; Leng et al., (2001)[26] describe shifts in Odiatom of up to 16‰ in Lake 

Pinarbasi (Turkey), which reflect changes in lake water dilution during periods of diatom 

growth. Finally,Shemesh et al., (1995)[27] found changes of up to 5‰ between diatom 

samples from the Holocene and the last glacial maximum in the Southern Ocean. 

 

Whilst all of these studies successfully use Odiatom as a palaeoclimate proxy, none attempt 

to reconstruct palaeo-water temperatures based on relatively small changes in Odiatom, 

where our results may be of greater consequence. Temperature related fractionation of 

Odiatom has been calculated at between –0.2 to –0.5‰/ ºC.[1,28,29] Taking the lower estimate 

of –0.2‰/ºC our dissolution-biased fractionation could be misinterpreted as a change in water 

temperature of ~3ºC. We therefore recommend that if Odiatom is to be used for 

palaeoclimate reconstruction, then dissolution states of diatom frustules should be considered. 

In cases where extreme diatom dissolution is identified, palaeoclimate reconstructions that 

identify changes of ~1‰ should be carefully evaluated and perhaps treated with some 

circumspection. 

 

Conclusions 

The potential for diatom dissolution within sediments appears strongly related to the age of 

diatom samples, with older samples (Miocene), being more resistant to further dissolution, 

even under highly alkaline conditions and high temperatures. The experiment undertaken at 

4ºC identifies reductions in diatom oxygen isotope value (<1.05‰, ʹ0.59‰ beyond error), 

especially in younger samples. Palaeoclimate reconstructions using Odiatom should therefore 

consider post burial dissolution at sites where palaeoclimate reconstructions are based on 

fluctuations in diatom į18O lower than 1‰, especially if palaeo-temperature reconstruction is 

being considered. At such sites, the use of the DDI may help to constrain the extent of post-

mortem diatom dissolution, and allow for a considered decision about the appropriateness of 

the assemblage for palaeoclimate reconstruction. 
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