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Abstract. The first δ30Sidiatom data from lacustrine sedi-
ment traps are presented from Lake Baikal, Siberia. Data are
compared with March surface water (upper 180 m)δ30SiDSi
compositions for which a mean value of+2.28‰ ± 0.09
(95 % confidence) is derived. This value acts as the pre-
diatom bloom baseline silicic acid isotopic composition of
waters (δ30SiDSi initial). Open traps were deployed along the
depth of the Lake Baikal south basin water column be-
tween 2012 and 2013. Diatom assemblages display a dom-
inance (> 85 %) of the spring/summer bloom speciesSyne-
dra acus var radians, so thatδ30Sidiatom compositions re-
flect predominantly spring/summer bloom utilisation. Di-
atoms were isolated from open traps and, in addition, from
3-monthly (sequencing) traps (May, July and August 2012)
for δ30Sidiatom analyses. Meanδ30Sidiatom values for open
traps are+1.23‰ ± 0.06 (at 95 % confidence and MSWD
of 2.9, n = 10). Total dry mass sediment fluxes are high-
est in June 2012, which we attribute to the initial export
of the dominant spring diatom bloom. We therefore argue
that Mayδ30Sidiatom signatures (+0.67‰ ± 0.06,2σ ) when
compared with mean upper waterδ30SiDSi initial (e.g. pre-
bloom) signatures can be used to provide a snapshot es-
timation of diatom uptake fractionation factors (ǫuptake) in
Lake Baikal. A ǫuptake estimation of−1.61 ‰ is therefore
derived, although we emphasise that synchronous monthly
δ30SiDSi and δ30Sidiatom data would be needed to provide
more robust estimations and therefore more rigorously test
this, particularly when taking into consideration any progres-

sive enrichment of the DSi pool as blooms persist. The near-
constantδ30Sidiatom composition in open traps demonstrates
the full preservation of the signal through the water column
and thereby justifies the use and application of the technique
in biogeochemical and palaeoenvironmental research. Data
are finally compared with lake sediment core samples, col-
lected from the south basin. Values of+1.30‰ ± 0.08 (2σ )
and+1.43‰ ± 0.13 (2σ ) were derived for cores BAIK13-
1C (0.6–0.8 cm core depth) and at BAIK13-4F (0.2–0.4 cm
core depth) respectively. Trap data highlight the absence
of a fractionation factor associated with diatom dissolution
(ǫdissolution) (particularly asSynedra acus var radians, the
dominant taxa in the traps, is very susceptible to dissolu-
tion) down the water column and in the lake surface sedi-
ments, thus validating the application ofδ30Sidiatom analyses
in Lake Baikal and other freshwater systems, in palaeorecon-
structions.

1 Introduction

Records of diatom silicon isotopes (δ30Sidiatom) provide
a key means to investigate changes in the global silicon cy-
cle (De La Rocha, 2006; Hendry and Brzezinski, 2014; Leng
et al., 2009; Tréguer and De La Rocha, 2013). Through mea-
surements ofδ30Si (including diatomsδ30Sidiatom and the
dissolved silicon (DSi) phaseδ30SiDSi) it has been possible
to elucidate a more comprehensive understanding of biogeo-
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chemical cycling both on continents (e.g. Cockerton et al.,
2013; Opfergelt et al., 2011) and in the ocean (Fripiat et al.,
2012) allowing, for example, an assessment of the role of the
marine biological pump in regulating past changes in atmo-
sphericpCO2(aq) (e.g. Pichevin et al., 2009). These studies
and their interpretations rely on work that has examined the
mechanics of diatom silicon isotope fractionation, demon-
strating an enrichment factor (ǫuptake: resulting from the dis-
crimination by diatoms against the heavier30Si isotope) of
−1.1‰ ± 0.4 to −1.2‰ ± 0.2. In this caseǫuptake is the
per mil enrichment between the resulting product and its sub-
strate. Estimations ofǫuptake(−1.1‰± 0.4 to−1.2‰± 0.2)
have to date shown it to be independent of temperature,
pCO2(aq) and other vital effects (De La Rocha et al., 1997;
Fripiat et al., 2011; Milligan et al., 2004; Varela et al., 2004),
although more recent work on marine diatoms in laboratory
cultures has argued for a species-dependent fractionation ef-
fect (Sutton et al., 2013). In this case,ǫuptakeestimations were
documented between−0.53‰± 0.11 and−0.56‰± 0.07
for theFragilariopsis kerguelensis species (depending on the
culturing strains used) and up to−2.09‰ ± 0.09 for the
Chaetocerous brevis species (Sutton et al., 2013).

A further assumption is that the isotopic signatures cap-
tured by diatoms in the photic zone are faithfully transported
through the water column and into the sediment record, with-
out alteration from dissolution or other processes. This has
been questioned by evidence from diatom cultures which
have revealed a diatom dissolution induced fractionation
(ǫdissolution) of −0.55 ± 0.05 ‰ (from the preferential re-
lease of the heavier30Si isotope into the dissolved phase,
over the lighter28Si during dissolution) that is independent
of inter-species variations or temperature (Demarest et al.,
2009), although the importance and indeed existence of an
ǫdissolutionhas been questioned by studies in the natural envi-
ronment (Egan et al., 2012) and the laboratory (Wetzel et al.,
2014). Whilst measurements ofδ30Sidiatom from sediment
traps (Varela et al., 2004), core-tops (Egan et al., 2012) and in
situ water column biogenic silica (BSi) (Fripiat et al., 2012)
in marine systems have been used in isolation, an integrated
record is needed to document the fate ofδ30Sidiatom as di-
atoms sink through the water and become incorporated into
the sediment record, particularly in a lacustrine system where
hitherto no such work has taken place. Here, we present pre-
diatom bloomδ30SiDSi initial andδ30Sidiatom data from Lake
Baikal, Siberia (Fig. 1). By analysing samples from sedi-
ment traps through the> 1600 m water column and a sedi-
ment core from the same site (Fig. 1), we document the good
transfer of the photic zoneδ30SiDSi signature into diatoms
and into the sediment record.

Unlike in ocean systems, whereδ30Sidiatom analyses have
been used as a tracer for past surface water DSi utilisation
and/or supply (De La Rocha, 2006; Pichevin et al., 2012;
Panizzo et al., 2013), its application in lake systems has not
been as fully explored. To date, only a handful of studies have
aimed to validate the proxy in lacustrine systems via in situ

Figure 1. Map of the Lake Baikal catchment, showing dominant
inflowing rivers and the Angara River outflow. The three catch-
ments are identified as well as the location of sites BAIK13-1 and
BAIK13-4, where cores, sediment traps and water column profiles
were collected.

measurements of seasonal DSi and BSi (Alleman et al., 2005;
Opfergelt et al., 2011). Here we present a further validation
of the proxy (e.g. estimations ofǫuptake), which also aims
to address more fully the preservation of the signal to the
sediment record (ǫdissolution), which is of great importance in
Lake Baikal where dissolution of diatoms is prevalent. This
is particularly important if measurements ofδ30Sidiatomare to
be used to reconstruct past DSi utilisation and/or supply in re-
lation to climatic and/or environmental perturbations (Street-
Perrott et al., 2008; Swann et al., 2010). Furthermore, with
recent evidence highlighting the perturbation of the steady-
state delivery of DSi to ocean systems as a result of lacus-
trine burial (Frings et al., 2014), the application ofδ30Sidiatom
techniques may be of great value in the future.

The main objectives of this study are to therefore

1. use annual sediment trap data as a means to document
the good transfer of surfaceδ30Sidiatom compositions to
the sediment record and validate the use ofδ30Sidiatom
methods in Lake Baikal as a proxy for DSi utilisa-
tion/supply, and

2. use sediment trap data, for the first time, to attempt to
validate fundamental principles ofǫuptakeandǫdissolution,

Biogeosciences, 13, 147–157, 2016 www.biogeosciences.net/13/147/2016/
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in Lake Baikal, which to date have been more widely
investigated in marine systems.

2 Lake Baikal

Lake Baikal (103◦43′–109◦58′ E and 51◦28′–55◦47′ N) is the
world’s deepest and most voluminous lake (23 615 km3) con-
taining one-fifth of global freshwater not stored in glaciers
and ice caps (Atlas Baikalia, 1993; Gronskaya and Litova,
1991; Sherstyankin et al., 2006). Divided into three basins
(south, central and north), the Academician Ridge separates
the central (max depth 1642 m) and north (max depth 904 m)
basins, while the Buguldeika ridge running north-easterly
from the shallow waters of the Selenga delta divides the south
(max depth 1460 m) and central basins (Sherstyankin et al.,
2006) (Fig. 1). This study will focus on the southern basin
(where sediment traps were deployed; Fig. 1), which has an
estimated average depth of 853 m (Sherstyankin et al., 2006)
and a long water residence time of 377–400 years (Gron-
skaya and Litova, 1991), although the residency time of sili-
con in the lake is estimated to be shorter at 170 years (Falkner
et al., 1997).

Diatom dissolution in Lake Baikal occurs mainly at the
bottom sediment–water interface as opposed to during down-
column settling of diatoms (Ryves et al., 2003), with Müller
et al. (2005) showing that remineralisation processes are an
important constituent of surface water nutrient renewal. Lake
Baikal may be thought of as having two differing water
masses with the mesothermal maximum (MTM) separating
them at a depth of ca. 200–300 m (Kipfer and Peeters, 2000;
Ravens et al., 2000). In the upper waters (above ca. 200–
300 m), both convective and wind forced mixing occurs twice
a year (Shimaraev et al., 1994; Troitskaya et al., 2014) during
spring and autumn overturn periods. These overturn periods
follow (precede) ice-off (on) respectively and are separated
by a period of summer surface water stratification (e.g. above
the MTM). Diatom productivity in the lake is most notable
during these overturn periods although spring diatom blooms
tend to dominate annual productivity. Below ca. 300 m (e.g.
below the MTM), waters are permanently stratified (Ravens
et al., 2000; Shimaraev et al., 1994; Shimaraev and Granin,
1991), although despite this the water column of Lake Baikal
is oxygenated throughout, and it is estimated that ca. 10 % of
its deeper water is renewed each year through downwelling
episodes (Hohmann et al., 1997; Kipfer et al., 1996; Shi-
maraev and Granin, 1991; Weiss et al., 1991).

3 Methods

3.1 Sample locations

Upper water column (top 180 m) samples for DSi concentra-
tions andδ30SiDSi analyses were collected on two occasions,
when the lake was ice-covered, less than 2 weeks apart, in

March 2013 at site BAIK13-1 (sampling a and b; Table 1)
in the south basin of Lake Baikal (Fig. 1; 51.76778◦ N and
104.41611◦ E) using a 2 L Van Dorn sampler. This sampling
coincided with the period when (1) riverine and precipitation
inflows to the lake are minimal, and (2) photosynthetic ac-
tivity in the lake was low (as demonstrated by negligible in
situ chlorophylla measurements). We argue that the average
pre-bloom DSi andδ30SiDSi values represent the baseline nu-
trient conditions of the upper waters of the south basin. Sam-
ples were filtered on collection through 0.4 µm polycarbon-
ate filters (Whatman) before storage in 125 mL acid-washed
LDPE bottles, and acidified with Superpure HCl to a pH
above 2.

At the same site, samples were collected from open sedi-
ment traps (n = 10) deployed by EAWAG and the Institute of
Earth’s Crust/SB-RAS between March 2012 and March 2013
(from 100 to 1350 m water depth; Table 2) and from monthly
sequencing traps (n = 3) on the same array at a water depth
of 100 m. For all open traps and for three of the monthly traps
(A4: 17 May to 7 June 2012, A6: 4 July to 31 July 2012 and
A7: 31 July 2012 to 21 August 2012) it was possible to ex-
tract sufficient diatoms for isotope analysis (see below).

Sediment cores were collected from site BAIK13-1
(51.76778◦ E and 104.41611◦ N; Fig. 1) and from the nearby
BAIK13-4 (51.69272◦ N and 104.30003◦ E; Fig. 1) using
a UWITEC corer through ca. 78–90 cm of ice with on-
site sub-sampling at 0.25 cm intervals. Both sediment cores
were dated using210Pb dating (at University College Lon-
don) using the CRS (constant rate of supply) model (Ap-
pleby and Oldfield, 1978), which is in agreement with the
individual 137Cs record for the two cores. Sub-samples cor-
responding to 0.6–0.8 cm at BAIK13-1 (core BAIK13-1C;
age= 2007AD± 2 years) and 0.2–0.4 cm at BAIK13-4 (core
BAIK13-4F; age= 2012AD± 7 years: the sampling period
covered by the sediment traps) were processed to obtain di-
atoms forδ30Sidiatom analysis.

3.2 Analytical methods

3.2.1 Diatom counting

To assess the taxonomic composition of diatoms in the open
sediment trap samples, diatom slides were prepared using
a protocol that omits any chemical treatments or centrifuga-
tion in order to minimise further diatom dissolution and valve
breakage (see Mackay et al., 1998, for full details). Slides
were counted using a Zeiss light microscope with oil im-
mersion and phase contrast at×1000 magnification. Micro-
spheres at a known concentration of 8.2×106 spheres mL−1

were added to all samples in order to calculate diatom con-
centrations.

www.biogeosciences.net/13/147/2016/ Biogeosciences, 13, 147–157, 2016
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Table 1.δ30SiDSi, respective uncertainties (2σ , unless otherwise stated) and DSi concentrations for sampling in South Basin of Lake Baikal
at site BAIK13-1 in March 2013. Bold values correspond to the weighted average mean values (with respective errors) of data presented.
Data are plotted in Fig. 3.

Depth (m) DSi (ppm) δ30SiDSi 2σ δ29SiDSi 2σ

BAIK13-1a 0.4 1.22 +2.34 0.152 +1.22 0.102

3 Mar 2013 10 1.19 +2.17 0.152 +1.18 0.092

24 1.17 +2.55 0.152 +1.29 0.102

40 1.12 +2.18 0.11 +1.18 0.06
100 1.06 +2.221 0.31 +1.271 0.19
180 0.66 +2.40 0.08 +1.23 0.04

BAIK13-1b 1 0.74 +2.16 0.09 +1.14 0.04
12 Mar 2013 10 1.21 +2.44 0.152 +1.20 0.052

20 1.15 +2.28 0.102 +1.17 0.042

50 1.16 +2.29 0.162 +1.26 0.112

W.A MEAN +2.28 0.092 +1.19 0.032

MSDW 4.1 1.9

1 This water sample was not pre-concentrated; refer to methods.2 These water sample values are weighted
averages for sample replicates that are analytically robust. These errors are at the 95 % confidence interval.

Table 2.Open and sequencing trap (sampling interval 2012–2013)δ30Sidiatomdata and respective uncertainties (2σ , unless otherwise stated).
Mean values for open trapδ30Sidiatom compositions are provided (in bold) along with 95 % confidence and the population MSWD value.
Mean values for sequencing trapδ30Sidiatom are also displayed in bold, with respective 2 SD errors. Respective water column depths for
open traps are presented along with the relative abundance ofS. acus var radians (data not available for sequencing traps). All open trap data
(Z2–Z11) are plotted in Fig. 4.

Code Depth (m) δ30SiDSi 2σ δ29SiDSi 2σ Sediment flux S. acus
(mgm−2 d−1) var radians

Open sediment traps

Z2 100 +1.19 0.12 +0.62 0.07 1584 90 %
Z3 200 +1.28 0.11 +0.70 0.06 1503 90 %
Z4 300 +1.111 0.15 +0.611 0.08 1686 93 %
Z5 400 +1.321 0.16 +0.691 0.10 1772 93 %
Z6 600 +1.381 0.15 +0.711 0.10 1942 88 %
Z7 700 +1.38 0.17 +0.69 0.11 1997 94 %
Z8 900 +1.26 0.14 +0.66 0.10 1980 92 %
Z9 1100 +1.21 0.13 +0.60 0.10 1887 94 %
Z10 1300 +1.171 0.12 +0.611 0.07 1943 92 %
Z11 1350 +1.25 0.11 +0.62 0.10 1999 86 %

W.A Mean +1.23 0.061 +0.63 0.031

MSWD 2.9 1.6

Sequencing traps

A4 May +0.67 0.06 +0.36 0.04 1650
A6 Jul +1.22 0.08 +0.53 0.09 175
A7 Aug +1.37 0.07 +0.69 0.03 169
Mean +1.09 0.74(2 SD) +0.53 0.33(2 SD)

Sediment cores

BAIK13-1C 0.6–0.8 cm +1.30 0.08 +0.68 0.05
BAIK13-4F 0.2–0.4 cm +1.43 0.13 +0.75 0.04

1 These water sample values are weighted averages for sample replicates that are analytically robust. These errors are at the 95 % confidence interval.

Biogeosciences, 13, 147–157, 2016 www.biogeosciences.net/13/147/2016/



V. N. Panizzo et al.: Insights into the transfer of silicon isotopes into the sediment record 151

3.2.2 Silicon isotope sample preparation

Prior to isotope analysis, 0.7–1.0 g of sediment core (dry
weight) and trap material (wet weight) was digested of or-
ganic matter with analytical grade H2O2 (30 %) at 75◦C for
ca. 12 h. This was followed by heavy density separation us-
ing sodium polytungstate (Sometu Europa) at 2500 rpm for
15 min, with centrifuge break off, at a specific gravity be-
tween 2.10 and 2.25 gmL−1 (adjusted to suit sample con-
tamination) to remove lithogenic particles and clays. Sam-
ples were washed (up to 10 times) with deionised water at
2500 rpm for 5 min before visual inspection for contaminants
at × − 400 magnification on a Zeiss inverted light micro-
scope. All samples showed no evidence of external contam-
inants that would impact the isotopic measurements (as dis-
played in light microscopy images; (Fig. 2).

Silicon concentrations on all 25 samples (10 March lake
water and 13 diatom opal trap samples (open Z and sequenc-
ing A traps) and 2 lake surface sediment samples) were mea-
sured on an Inductively Coupled Plasma-Mass Spectrom-
eter (ICP-MS) (Agilent Technologies 7500) at the British
Geological Survey. Diatom samples were digested using
the NaOH fusion method (Georg et al., 2006) with 1–3 mg
of powdered material fused with a 200 mg NaOH (Quartz
Merk) pellet in a silver crucible, covered within a Ni crucible
with lid, for 10 min in a muffle furnace at 730◦C. Follow-
ing fusion, silver crucibles were placed in a 30 mL Teflon
Savillex beaker and rinsed with Milli Q water before adding
Ultra Purity Acid (UPA) HCl (Romil) to reach a pH above 2.
Samples were sonicated to ensure they were fully dissolved
and mixed before leaving them overnight in the dark.

Water samples with DSi concentrations< 1.5 ppm were
pre-concentrated prior to column chemistry by evaporating
30 mL of sample to 5 mL at 70◦C on a hotplate in a Teflon
Savillex beaker in a laminar flow hood. This follows Hughes
et al. (2011), who showed no evaporative alteration of silicon
in samples and reference materials, provided samples are not
evaporated to dryness. This was not conducted for sample
BAIK1a-100 m as there was insufficient sample to do so (Ta-
ble 1). Following pre-concentration, samples (and reference
and validation materials) were purified by passing a known
volume (between 1 and 2.5 mL depending on Si concentra-
tion) through a 1.8 mL cationic resin bed (BioRad AG50W-
X12) (Georg et al., 2006) and eluted with 3 mL of Milli Q
water in order to obtain an optimal Si concentration of be-
tween 3 and 10 ppm.

3.2.3 Silicon isotope analysis

All isotope analyses were carried out on a ThermoSci-
entific Neptune Plus MC-ICP-MS (multi collector induc-
tively coupled plasma mass spectrometer), operated in wet-
plasma mode using the method/settings outlined in Cocker-
ton et al. (2013). To overcome any analytical bias due to dif-
fering matrices, samples and reference materials were acid-

ified using HCl (to a concentration of 0.05 M, using Romil
UPA) and sulfuric acid (to a concentration of 0.003 M, using
Romil UPA) following the recommendations of Hughes et al.
(2011), the principle being that doping samples and standards
alike, above and beyond the natural abundance of Cl− and
SO2−

4 will evoke a similar mass bias response in each. All
samples and reference materials were doped with∼ 300 ppb
magnesium (Mg, Alfa Aesar SpectraPure) to allow the data
to be corrected for the effects of instrument-induced mass
bias (Cardinal et al., 2003; Hughes et al., 2011). In order to
do this, Mg concentrations were the same in both standard
and samples.

Background signal contributions on28Si were typically
between 50 and 100 mV. Total procedural blanks for water
samples were 15 ng compared to typical sample amounts of
4000 ng. Procedural blank compositions are difficult to accu-
rately measure (due to exceedingly low Si signals), but as a
worst-case scenario may have deviated from sample compo-
sitions by ca. 0.38 ‰, contributing up to a ca. 0.02 ‰ shift in
typical sample compositions. This increases to ca. 0.20 ‰
compositional shift in exceptional cases, i.e. for one sam-
ple replicate (BAIK13-1 100 m), which has a Si concen-
tration of much less than 1 ppm. Fusion procedural blanks
were ca. 42 ng compared to typical fusion sample amounts of
4900 ng. Again, procedural blank compositions are difficult
to accurately measure, but may have deviated from sample
compositions by ca. 0.04 ‰, contributing up to a less than
0.01 ‰ shift in the sample compositions.

The validation material (diatomite) was analysed repeat-
edly during each analytical session and a secondary ref-
erence material (an in-house river water sample, RMR4)
was also periodically analysed. Data were corrected on-
line for mass bias using an exponential function, assum-
ing 24Mg/25Mg = 0.126633. All uncertainties are reported
at 2σ absolute, and incorporate an excess variance derived
from the diatomite validation material, which was quadrat-
ically added to the analytical uncertainty of each measure-
ment.δ30Si :δ29Si ratios of all data were compared with the
mass-dependent fractionation line (1.93), with which all data
comply (Johnson et al., 2004). Long-term (ca. 2 years) vari-
ance for the method is the following: diatomite= +1.23‰±

0.16 (2σ , n = 210) (consensus value of+1.26‰± 0.2, 2σ ;
Reynolds et al. (2007)) and RMR4= +0.88‰ ± 0.20 (2σ ,
n = 42).

4 Results

Below-iceδ30SiDSi and DSi values in March 2013 from the
top 1 m of the water column, collected within 2 weeks of each
other, are+2.34‰ ± 0.15 (2σ ), 1.22 ppm and+2.16‰ ±

0.09 (2σ ), 0.74 ppm for BAIK13-1a and BAIK13-1b respec-
tively (Fig. 3; Table 1). DSi compositions show some vari-
ability with depth at both sites, with overall trends showing
decreasing concentrations with depth (Fig. 3), with the ex-

www.biogeosciences.net/13/147/2016/ Biogeosciences, 13, 147–157, 2016
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Figure 2. Light microscopy images of open trap diatom species from Lake Baikal (×1000). Images show the purity of samples used for
δ30Sidiatomanalyses.

Figure 3. Depicting water column sampling from Lake Baikal (180 m below surface) of DSi concentrations (ppm) shown in green and
δ30SiDSi (‰) signatures in blue. The two sampling intervals (BAIK13-1a and 1b) from March 2013 are both displayed. Note the different
sampling depths for these two data sets. All analytical errors of uncertainty are shown in grey (2σ ). All data correspond to Table 1.

ception of the surface sample at BAIK13-1b (0.74 ppm). As
we are unable to fully account for this variability in DSi con-
centrations, we use a weighted mean of surface water (e.g.
above the MTM)δ30SiDSi compositions, collected in March
before the diatom bloom period, to act as the baseline iso-
topic composition (as will be discussed in Sect. 5.1). This is
in order to compare with open trap data and estimate the frac-
tionation effect of diatoms (ǫdissolution). In this case,δ30SiDSi
means are+2.28‰ (± 0.09, 95 % confidence; Table 1), al-
though some variability is highlighted between data (e.g.
mean square weighted deviation (MSWD)= 4.1,n = 10; Ta-
ble 1).

ICP-MS data of diatom opal show that ratios of Al:Si
are all < 0.01 (data not shown), indicating that contami-
nation in all sediment trap and core samples is negligible.
This was confirmed by visual inspection of the diatom sam-
ples by light microscopy, prior to analysis (Fig. 2). Sediment
trap diatoms are dominated (> 85 %) by the speciesSynedra
acus var radians. Diatom concentrations show some variabil-
ity, varying between ca. 3× 104 and 7× 104 valvesg−1 wet
weight (Fig. 4), although lowest concentrations are seen in
the open sediment trap at 1350 m depth (3× 104 valvesg−1

wet weight Fig. 4). This is coincident with lowest diatom

(S. acus var radians) valve abundances also (86 %; Table 2).
δ30Sidiatomdata from the open sediment traps show little vari-
ability (within analytical uncertainty) down the water column
profile in Lake Baikal (Table 2; Fig. 4) with values ranging
from +1.11 to +1.38 ‰ (weighted mean+1.23‰ ± 0.06
at 95 % confidence, MSWD= 2.9,n = 10). Sequencing (A)
traps from May, July and August following the onset of major
diatom productivity in early spring show a degree of variabil-
ity with July and Augustδ30Sidiatom data similar to the open
sediment traps but data from May lower at 0.67 ‰± 0.06
(Table 2). Surface sediment results from BAIK13-1C (0.6–
0.8 cm core depth) and BAIK13-4F (0.2–0.4 cm core depth)
are very similar to both open (Z) and July–August sequenc-
ing (A) traps withδ30Sidiatom signatures of+1.30‰ ± 0.08
(2σ ) and+1.43‰ ± 0.13 (2σ ) respectively (Table 2). Open
trap total dry mass fluxes show a near-constant value down
the Lake Baikal water column (Table 2), with values rang-
ing between 289.64 mgm−2 d−1 at 1300 m water depth and
327.32 mgm−2 d−1 at 900 m water depth. Sequencing traps
show the highest peak in total dry mass fluxes for the month
of June 1649.52 mgm−2 d−1 (although black particulate mat-
ter, of unknown origin, is also present) and remain higher
(compared to winter months) from July to October (Fig. 5).
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Figure 4.Open sediment trap (2012–2013) data from site BAIK13-1, south basin Lake Baikal (brown symbols). Samples are displayed along
ay axis of water column depth.δ30Sidiatomdata (‰) are expressed with respective analytical errors (2σ ) and surface sediment samples from
cores BAIK13-1C and BAIK13-4F are also displayed (green symbols) along with the mean March surface (2013) water composition (blue
symbol). Percentage abundance of the dominant diatomSynedra acus var radians, diatom concentrations (valves g−1 wet weight) and total
dry mass sediment fluxes (mgm−2 d−1) are also provided. All data apart from diatom concentrations are presented in Table 2.

Figure 5.Total dry mass sediment fluxes (mgm−2 d−1) for monthly
sequencing traps, positioned at 100 m water depth in the South
Basin of Lake Baikal (2012–2013).

5 Discussion

The extreme continentality of the region around Lake Baikal
generates cold, dry winters that create an extensive ice cover
over the lake from October/November to May/June (north
basin) and from January to April/May (south basin) (Atlas
Baikalia, 1993). This ice cover plays a key role in regulating
seasonal diatom productivity (as discussed in Sect. 2) with
blooms developing following the (1) reductions in ice cover
in spring and (2) after mixed-layer stratification in summer
(Shimaraev et al., 1994; Popovskaya, 2000; Granin et al.,
2000; Jewson et al., 2009; Troitskaya et al., 2014). These

blooms are also coincident with periods of overturn in the
upper waters of the lake (e.g. above the MTM; Sect. 2).
The Marchδ30SiDSi data in this study were collected when
there was no/negligible chlorophylla in the water column
down to a depth of 200 m. Accordingly, we interpret March
δ30SiDSi (+2.28‰± 0.09; 95 % confidence interval,n = 10;
Table 1) as reflecting the pre-spring bloom isotopic compo-
sition of silicic acid in the mixed layer prior to its uptake and
fractionation in subsequent weeks as the spring bloom de-
velops. Whilst the open traps deployed from March 2012 to
March 2013 may contain diatoms from both spring and au-
tumnal blooms, we suggest thatδ30Sidiatom signatures from
these traps are primarily derived from the first bloom in
spring/summer due to the dominance of (1) spring diatom
blooms in the annual record (Popovskaya, 2000), and (2) the
dominance of spring/summer (May to August) bloomingS.
acus var radians (Ryves et al., 2003) in the traps (> 85 %
relative abundance (Fig. 4). This is supported by total dry
mass fluxes from the 100 m sequencing traps which peak in
June to September (Fig. 5). We therefore argue that the open
trap data should be primarily reflective of spring to summer
silicic acid utilisation in the photic zone and so can be used
to trace the fate of surface water signatures through the water
column and into the sediment record.

5.1 Estimations of diatom fractionation factors (ǫ)

During biomineralisation, diatoms discriminate against the
heavier30Si isotope, preferentially incorporating28Si into
their frustules and leaving ambient waters enriched in30Si.
Existing work from culture experiments and marine envi-
ronments has suggested anǫ (the per mil enrichment factor
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between dissolved (DSi) and solid (diatom) phases) during
biomineralisation (ǫuptake) of −1.1 ± 0.4 to −1.2 ± 0.2 ‰
(De La Rocha et al., 1997; Milligan et al., 2004; Varela et al.,
2004; Fripiat et al., 2011). Such estimations ofǫuptake have
been applied within both closed system (De La Rocha et al.,
1997) and open system (Varela et al., 2004) modelling as
a means of estimating variations inδ30Si compositions, al-
though, as discussed in Sect. 1, more recent evidence from
cultured marine diatoms does point to a species-dependent
fractionation effect, which could range anywhere between
−0.53‰ ± 0.11 (Fragilariaopsis kerguelensis species) and
−2.09‰± 0.09 (Chaetocerous brevis species) (Sutton et al.,
2013).

Monthly data for bothδ30SiDSi and δ30Sidiatom are not
available in order to fully constrainǫuptake over the course
of the diatom growing season in Lake Baikal (e.g. estimat-
ing variations between the open and closed system models,
where the import/export of DSi and BSi can be more fully
estimated from surface waters). Nevertheless, we can apply
the data in this context to provide a snapshot ofǫuptake, when
a comparison is made betweenδ30SiDSi initial and the first
monthly sequencing trapδ30Sidiatom compositions. We se-
lect the Mayδ30Sidiatom signatures as we propose it reflects
the initiation of the diatom bloom and therefore captures the
opal exported (based on total dry mass sediment flux data;
Fig. 5) from surface waters at this time. These compositions
will therefore most likely derive from DSi initial composi-
tions (March surface waters) before any (or minimal) pro-
gressive DSi enrichment occurs. We propose these data for
discursive reasons in order to extend the estimations ofǫuptake
from lacustrine systems and argue that they act as a snapshot
estimation in this instance.

When examining sequencing trap total dry mass sedi-
ment fluxes for the year 2012–2013, numbers are greatest
for the month of June (Fig. 5). This directly follows the
period whenδ30Sidiatom isotopic compositions are the low-
est of the three sequencing traps presented (May 2012=

+0.67‰ ± 0.06,2σ ). Although diatom concentrations are
not available for the sequencing traps, we propose that these
higher total dry mass sediment fluxes (Fig. 5) capture the ex-
ported May 2012 diatom bloom (e.g. the spring bloom) fol-
lowing ice-off and, based on flux data, most likely represent
the event more closely associated with pre-bloom surface
water (e.g. March)δ30SiDSi compositions (+2.28‰± 0.09;
95 % confidence interval,n = 10; Table 1). Although later
monthly δ30SiDSi data are not available, it is probable that
the heavier isotopicδ30Sidiatomcompositions of July and Au-
gust sequencing traps (Table 2) reflect the progressive enrich-
ment of the DSi surface pool as the bloom develops. On the
contrary, open trap data (Table 2) constitute the mean annual
δ30Sidiatom composition of diatoms, incorporating signatures
derived from throughout the year (a meanδ30Sidiatomcompo-
sition of+1.23‰± 0.06; 95 % confidence interval,n = 10;
Table 2).

Although diatom uptake fractionation factors cannot be
fully constrained in this study (particularly when address-
ing open trapδ30Sidiatom signatures), due to the absence
of comprehensive monthly DSi and BSi data, we can still
provide an estimation ofǫuptake for Lake Baikal. However,
we emphasise that this is for discussion purposes alone and
that in order for this to be a more robust estimation, there
is a need for more seasonal investigations. Nevertheless, if
we argue that Mayδ30Sidiatom act as the dominant spring
bloom composition (+0.67‰ ± 0.06,2σ ; Table 2) exported
from the surface zone and we compare this with our March
2013 mean pre-bloom spring top water (incorporating 0 to
180 m)δ30SiDSi composition (e.g. a DSi initial) of+2.28‰
(± 0.09, 95 % confidence interval,n = 10) (Table 1), we can
derive an estimation ofǫuptakeof −1.61 ‰ (ranging between
−1.46 and−1.70 ‰ when taking account of respective ana-
lytical uncertainty). We propose that this reflects more fully
the initial uptake of DSi by diatoms, following ice-off and
turnover, while later sequential trap data (of July and August;
+1.22‰± 0.08 and+1.37‰± 0.07 respectively; Table 2)
quite possibly reflect the progressive enrichment of the sur-
face DSi pool which cannot be constrained here. Although
this ǫuptake estimation of−1.61 ‰ falls within (or just out-
side of, e.g.−1.2‰ ± 0.2 from Fripiat et al., 2011) analyt-
ical uncertainty of existing estimations ofǫuptake (e.g. from
temperate/sub-polar marine diatoms,−1.1‰ ± 0.4; De La
Rocha et al., 1997), we propose that they highlight the need
for further estimations within the literature. This is particu-
larly important within the context of freshwater Si palaeore-
constructions where there is a paucity of laboratory culture
experiments, as the handful of in situ measurements derived
from lacustrine studies have calculatedǫuptakevalues closer
to −1.1 ‰ (e.g. Alleman et al., 2005; Opfergelt et al., 2011).
What is more, these estimations ofǫuptake are further com-
pounded by the more recent evidence which has thrown into
question the role that species-dependent fractionation factors
may take during diatom biomineralisation (e.g. Sutton et al,
2013), although investigations of this in lacustrine environ-
ments are still to be conducted.

5.2 The fate of diatom utilisation andδ
30Sidiatom in

Lake Baikal

Asides from the discussions surrounding the biological up-
take of DSi by diatoms and the seasonal relationship between
DSi compositions, the isotopic composition of trap data (Ta-
ble 2) from down the water column (except for the May se-
quencing trap) (Table 2) highlights the fact that the isotopic
signature incorporated into diatoms in the photic zone during
biomineralisation is safely transferred through the water col-
umn without alteration, either from dissolution (ǫdissolution)
or other processes. Indeed,δ30Sidiatomsignatures through the
open traps show minimal variation (mean of+1.23‰± 0.06
at 95 % confidence and MSWD of 2.9,n = 10; Table 2).
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The role of dissolution is particularly important for the
speciesSynedra acus var radians (which dominates open
trap compositions for the year 2012–2013; Table 2) as the
literature has demonstrated the fragility of this valve, partic-
ularly its sensitivity to water column and surface sediment
interface dissolution (Battarbee et al., 2005; Ryves et al.,
2003). While this species is sensitive to dissolution, Mackay
et al. (1998) have nevertheless documented an increased per-
centage presence in south basin Lake Baikal sediments over
the past ca. 60 years (to between 10 and 20 % relative abun-
dance), thought to represent a biological response to late 20th
century warming in this region. Although the majority of dis-
solution in Lake Baikal occurs at the surface–sediment inter-
face, with only 1 % of phytoplanktonic diatoms becoming
incorporated into the sediment record (Ryves et al., 2003;
Battarbee et al., 2005),δ30Sidiatom in sediment core sur-
face samples (i.e. post burial) at BAIK13-1C (0.6–0.8 cm
core depth) and at BAIK13-4F (0.2–0.4 cm core depth) of
+1.30‰± 0.08 (2σ ) and+1.43‰± 0.13 (2σ ) respectively
(Fig. 4), are also similar (within uncertainty) to the sediment
trap data of+1.23‰ ± 0.06 (95 % confidence). These data
confirm that in contrast to previous work (Demarest et al.,
2009) there is noǫdissolutionor at least no other alteration of
the δ30Sidiatom signature from diatoms sinking through the
water column and during burial in the sediment record. This
in agreement with previous studies on marine diatoms (Wet-
zel et al., 2014) and validates thatδ30Sidiatom can be used
in lacustrine sediment cores to constrain biogeochemical cy-
cling (building on work by Egan et al., 2012).

6 Conclusions

The firstδ30Sidiatom data from lacustrine sediment traps are
presented from Lake Baikal, Siberia, and their use in in-
terpreting the fate ofδ30Sidiatom in the sediment record is
shown. Mean values for open traps (+1.23‰± 0.06 at 95 %
confidence and MSWD of 2.9,n = 10) suggest no alteration
to the signal through the water column. Sequencing traps
(May, July and August) do show variation in theirδ30Sidiatom
signatures, with May the lowest at+0.67‰ (± 0.06). With
total dry mass sediment fluxes highest in June 2012, we
argue that May represents the initial diatom bloom export
from surface waters. As such, we provide a snapshot estima-
tion of ǫuptake in Lake Baikal of−1.61‰, when comparing
May δ30Sidiatomcompositions and mean surface water March
δ30SiDSi compositions (+2.28‰± 0.09 at 95 % confidence).
Although monthly synchronousδ30SiDSi andδ30Sidiatom are
not available to fully constrainǫuptake (nor indeed any sea-
sonal progressive enrichment of DSi in surface waters) in
Lake Baikal surface waters, the data provide a snapshot into
stable isotope processes in freshwater systems which to date
have not been fully explored. The near-constantδ30Sidiatom
compositions in open traps demonstrates the full preservation
of the signal through the water column and thereby justifies

the use and application of the technique in biogeochemical
and palaeoenvironmental research. In particular, data high-
light the absence of a fractionation factor associated with di-
atom dissolution (ǫdissolution) down the water column, of par-
ticular importance as the diatom speciesSynedra acus var.
radians is known to be sensitive to dissolution with estima-
tions of only up to 5 % making it to the sediment interface
(Ryves et al., 2003). This is further reinforced by lake surface
sediment data from south basin cores, which also demon-
strate the absence ofǫdissolution due to the similar compo-
sitions (within uncertainty) of surface sedimentδ30Sidiatom
when compared to open trap data.
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