642 research outputs found

    Inhibition of intra-Golgi transport in mitotic extracts

    Get PDF
    Many stages of vesicle-mediated exocytic and endocytic membrane traffic are inhibited in mitotic mammalian cells. The fact that transport between the ER and the Golgi is inhibited in mitosis made it technically very difficult to monitor mitotic intra-Golgi protein transport in vivo. Therefore, a cell-free assay was supplemented with heterologous cytosols to study transport inhibition in vitro. A high-speed supernatant ('cytosol') with high histone kinase activity was prepared from mitotic cells and markedly inhibited intra-Golgi transport. The inhibition was mimicked by treatment of interphase cytosol with the p34cdc-2-associated protein cyclin A, and was reversed by the kinase inhibitor staurosporine, strongly linking a mitotic kinase-phosphatase cycle with control of the assay. The histone kinase activity of the S-phase kinase p33cdc-2 did not promote transport inhibition, and destruction of p34cdc-2 a temperature sensitive cell line prevented the cyclin effect. These results supported the hypothesis that the mitotic kinase p34cdc-2 was responsible for transport inhibition, though probably not directly. Pharmacological and biochemical experiments suggested that the fusion of transport vesicles with their target was the site of the inhibition. The proteins involved are not known at present. These data support a model which links inhibition of vesicle fusion with the observed vesiculation of the Golgi during mitosis

    Aging, Emotion, Attention, and Binding in the Taboo Stroop Task: Data and Theories.

    Get PDF
    How does aging impact relations between emotion, memory, and attention? To address this question, young and older adults named the font colors of taboo and neutral words, some of which recurred in the same font color or screen location throughout two color-naming experiments. The results indicated longer color-naming response times (RTs) for taboo than neutral base-words (taboo Stroop interference); better incidental recognition of colors and locations consistently associated with taboo versus neutral words (taboo context-memory enhancement); and greater speed-up in color-naming RTs with repetition of color-consistent than color-inconsistent taboo words, but no analogous speed-up with repetition of location-consistent or location-inconsistent taboo words (the consistency type by repetition interaction for taboo words). All three phenomena remained constant with aging, consistent with the transmission deficit hypothesis and binding theory, where familiar emotional words trigger age-invariant reactions for prioritizing the binding of contextual features to the source of emotion. Binding theory also accurately predicted the interaction between consistency type and repetition for taboo words. However, one or more aspects of these phenomena failed to support the inhibition deficit hypothesis, resource capacity theory, or socio-emotional selectivity theory. We conclude that binding theory warrants further test in a range of paradigms, and that relations between aging and emotion, memory, and attention may depend on whether the task and stimuli trigger fast-reaction, involuntary binding processes, as in the taboo Stroop paradigm

    Very small deletions within the NESP55 gene in pseudohypoparathyroidism type 1b

    No full text
    Pseudohypoparathyroidism (PHP) is caused by reduced expression of genes within the GNAS cluster, resulting in parathormone resistance. The cluster contains multiple imprinted transcripts, including the stimulatory G protein α subunit (Gs-α) and NESP55 transcript preferentially expressed from the maternal allele, and the paternally expressed XLas, A/B and antisense transcripts. PHP1b can be caused by loss of imprinting affecting GNAS A/B alone (associated with STX16 deletion), or the entire GNAS cluster (associated with deletions of NESP55 in a minority of cases). We performed targeted genomic next-generation sequencing (NGS) of the GNAS cluster to seek variants and indels underlying PHP1b. Seven patients were sequenced by hybridisation-based capture and fourteen more by long-range PCR and transposon-mediated insertion and sequencing. A bioinformatic pipeline was developed for variant and indel detection. In one family with two affected siblings, and in a second family with a single affected individual, we detected maternally inherited deletions of 40 and 33 bp, respectively, within the deletion previously reported in rare families with PHP1b. All three affected individuals presented with atypically severe PHP1b; interestingly, the unaffected mother in one family had the detected deletion on her maternally inherited allele. Targeted NGS can reveal sequence changes undetectable by current diagnostic methods. Identification of genetic mutations underlying epigenetic changes can facilitate accurate diagnosis and counselling, and potentially highlight genetic elements critical for normal imprint settin

    Genomic imprinting disorders: lessons on how genome, epigenome and environment interact

    Get PDF
    Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos

    Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans.

    Get PDF
    Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).This is the author accepted manuscript. The final version is available from Cell Press (Elsevier) via http://dx.doi.org/10.1016/j.tig.2016.05.001

    Congenital imprinting disorders: EUCID.net - a network to decipher their aetiology and to improve the diagnostic and clinical care.

    Get PDF
    Imprinting disorders (IDs) are a group of eight rare but probably underdiagnosed congenital diseases affecting growth, development and metabolism. They are caused by similar molecular changes affecting regulation, dosage or the genomic sequence of imprinted genes. Each ID is characterised by specific clinical features, and, as each appeared to be associated with specific imprinting defects, they have been widely regarded as separate entities. However, they share clinical characteristics and can show overlapping molecular alterations. Nevertheless, IDs are usually studied separately despite their common underlying (epi)genetic aetiologies, and their basic pathogenesis and long-term clinical consequences remain largely unknown. Efforts to elucidate the aetiology of IDs are currently fragmented across Europe, and standardisation of diagnostic and clinical management is lacking. The new consortium EUCID.net (European network of congenital imprinting disorders) now aims to promote better clinical care and scientific investigation of imprinting disorders by establishing a concerted multidisciplinary alliance of clinicians, researchers, patients and families. By encompassing all IDs and establishing a wide ranging and collaborative network, EUCID.net brings together a wide variety of expertise and interests to engender new collaborations and initiatives

    Neurodevelopmental multimorbidity and educational outcomes of Scottish schoolchildren : A population-based record linkage cohort study

    Get PDF
    Data Availability: All health data are owned by the Information Services Division of NHS National Services Scotland (https://www.isdscotland.org), and all education data are owned by the ScotXed Unit, which is part of the Educational Analytical Services Division within the Learning and Justice Directorate of the Scottish Government (www2.gov.scot/Topics/Statistics/ScotXed). Interested researchers may apply at these sites for data access. Funding: The study was sponsored by Health Data Research UK (www.hdruk.ac.uk) (grant reference number MR/S003800/1) (MF) which is a joint investment led by the Medical Research Council, together with the National Institute for Health Research (England), the Chief Scientist Office (Scotland), Health and Care Research Wales, Health and Social Care Research and Development Division (Public Health Agency, Northern Ireland), the Engineering and Physical Sciences Research Council, the Economic and Social Research Council, the British Heart Foundation and Wellcome. There was additional funding from the Carnegie Trust for the Universities of Scotland (grant reference VAC007974) (EES) and an MRC Mental Health Data Pathfinder grant (grant reference MC_PC_17217) (MF, JPP, DK, SC).Peer reviewedPublisher PD

    Congenital imprinting disorders: EUCID.net - a network to decipher their aetiology and to improve the diagnostic and clinical care

    Get PDF
    Imprinting disorders (IDs) are a group of eight rare but probably underdiagnosed congenital diseases affecting growth, development and metabolism. They are caused by similar molecular changes affecting regulation, dosage or the genomic sequence of imprinted genes. Each ID is characterised by specific clinical features, and, as each appeared to be associated with specific imprinting defects, they have been widely regarded as separate entities. However, they share clinical characteristics and can show overlapping molecular alterations. Nevertheless, IDs are usually studied separately despite their common underlying (epi) genetic aetiologies, and their basic pathogenesis and long-term clinical consequences remain largely unknown. Efforts to elucidate the aetiology of IDs are currently fragmented across Europe, and standardisation of diagnostic and clinical management is lacking. The new consortium EUCID.net (European network of congenital imprinting disorders) now aims to promote better clinical care and scientific investigation of imprinting disorders by establishing a concerted multidisciplinary alliance of clinicians, researchers, patients and families. By encompassing all IDs and establishing a wide ranging and collaborative network, EUCID.net brings together a wide variety of expertise and interests to engender new collaborations and initiatives
    corecore