5,553 research outputs found

    Spin Control of Drifting Electrons using Local Nuclear Polarization in Ferromagnet/Semiconductor Heterostructures

    Full text link
    We demonstrate methods to locally control the spin rotation of moving electrons in a GaAs channel. The Larmor frequency of optically-injected spins is modulated when the spins are dragged through a region of spin-polarized nuclei created at a MnAs/GaAs interface. The effective field created by the nuclei is controlled either optically or electrically using the ferromagnetic proximity polarization effect. Spin rotation is also tuned by controlling the carrier traverse time through the polarized region. We demonstrate coherent spin rotations exceeding 4 pi radians during transport.Comment: 15 pages, 4 figure

    Observation of coherent π0\pi^0 electroproduction on deuterons at large momentum transfer

    Get PDF
    The first experimental results for coherent π0\pi^0-electroproduction on the deuteron, e+de+d+π0e+d\to e+d +\pi^0, at large momentum transfer, are reported. The experiment was performed at Jefferson Laboratory at an incident electron energy of 4.05 GeV. A large pion production yield has been observed in a kinematical region for 1.1<Q2<<Q^2<1.8 GeV2^2, from threshold to 200 MeV excitation energy in the dπ0d\pi^0 system. The Q2Q^2-dependence is compared with theoretical predictions.Comment: 26 page

    Vortices and confinement at weak coupling

    Full text link
    We discuss the physical picture of thick vortices as the mechanism responsible for confinement at arbitrarily weak coupling in SU(2) gauge theory. By introducing appropriate variables on the lattice we distinguish between thin, thick and `hybrid' vortices, the latter involving Z(2) monopole loop boundaries. We present numerical lattice simulation results that demonstrate that the full SU(2) string tension at weak coupling arises from the presence of vortices linked to the Wilson loop. Conversely, excluding linked vortices eliminates the confining potential. The numerical results are stable under alternate choice of lattice action as well as a smoothing procedure which removes short distance fluctuations while preserving long distance physics.Comment: 21 pages, LaTe

    Combinatorial quantization of the Hamiltonian Chern-Simons theory I

    Full text link
    Motivated by a recent paper of Fock and Rosly \cite{FoRo} we describe a mathematically precise quantization of the Hamiltonian Chern-Simons theory. We introduce the Chern-Simons theory on the lattice which is expected to reproduce the results of the continuous theory exactly. The lattice model enjoys the symmetry with respect to a quantum gauge group. Using this fact we construct the algebra of observables of the Hamiltonian Chern-Simons theory equipped with a *-operation and a positive inner product.Comment: 49 pages. Some minor corrections, discussion of positivity improved, a number of remarks and a reference added

    Construction of Field Algebras with Quantum Symmetry from Local Observables

    Full text link
    It has been discussed earlier that ( weak quasi-) quantum groups allow for conventional interpretation as internal symmetries in local quantum theory. From general arguments and explicit examples their consistency with (braid-) statistics and locality was established. This work addresses to the reconstruction of quantum symmetries and algebras of field operators. For every algebra \A of observables satisfying certain standard assumptions, an appropriate quantum symmetry is found. Field operators are obtained which act on a positive definite Hilbert space of states and transform covariantly under the quantum symmetry. As a substitute for Bose/Fermi (anti-) commutation relations, these fields are demonstrated to obey local braid relation.Comment: 50 pages, HUTMP 93-B33

    Multivalued Fields on the Complex Plane and Conformal Field Theories

    Full text link
    In this paper a class of conformal field theories with nonabelian and discrete group of symmetry is investigated. These theories are realized in terms of free scalar fields starting from the simple bcb-c systems and scalar fields on algebraic curves. The Knizhnik-Zamolodchikov equations for the conformal blocks can be explicitly solved. Besides of the fact that one obtains in this way an entire class of theories in which the operators obey a nonstandard statistics, these systems are interesting in exploring the connection between statistics and curved space-times, at least in the two dimensional case.Comment: (revised version), 30 pages + one figure (not included), (requires harvmac.tex), LMU-TPW 92-1

    Variational solution of the Yang-Mills Schr\"odinger equation in Coulomb gauge

    Full text link
    The Yang-Mills Schr\"odinger equation is solved in Coulomb gauge for the vacuum by the variational principle using an ansatz for the wave functional, which is strongly peaked at the Gribov horizon. A coupled set of Schwinger-Dyson equations for the gluon and ghost propagators in the Yang-Mills vacuum as well as for the curvature of gauge orbit space is derived and solved in one-loop approximation. We find an infrared suppressed gluon propagator, an infrared singular ghost propagator and a almost linearly rising confinement potential.Comment: 24 pages, revtex, 13 figure

    Conformal fields in the pp-wave limit

    Full text link
    The pp-wave (Penrose limit) in conformal field theory can be viewed as a special contraction of the unitary representations of the conformal group. We study the kinematics of conformal fields in this limit in a geometric approach where the effect of the contraction can be visualized as an expansion of space-time. We discuss the two common models of space-time as carrier spaces for conformal fields: One is the usual Minkowski space and the other is the coset of the conformal group over its maximal compact subgroup. We show that only the latter manifold and the corresponding conformal representation theory admit a non-singular contraction limit. We also address the issue of correlation functions of conformal fields in the pp-wave limit. We show that they have a well-defined contraction limit if their space-time dependence merges with the dependence on the coordinates of the R symmetry group. This is a manifestation of the fact that in the limit the space-time and R symmetries become indistinguishable. Our results might find applications in actual calculations of correlation functions of composite operators in N=4 super Yang-Mills theory.Comment: LaTex, 32 pages, 1 figure, discussion of correlation functions extended; some corrections made; references adde

    Infrared conductivity of hole accumulation and depletion layers in (Ga,Mn)As- and (Ga,Be)As-based electric field-effect devices

    Full text link
    We have fabricated electric double-layer field-effect devices to electrostatically dope our active materials, either xx=0.015 Ga1x_{1-x}Mnx_xAs or xx=3.2×104\times10^{-4} Ga1x_{1-x}Bex_xAs. The devices are tailored for interrogation of electric field induced changes to the frequency dependent conductivity in the accumulation or depletions layers of the active material via infrared (IR) spectroscopy. The spectra of the (Ga,Be)As-based device reveal electric field induced changes to the IR conductivity consistent with an enhancement or reduction of the Drude response in the accumulation and depletion polarities, respectively. The spectroscopic features of this device are all indicative of metallic conduction within the GaAs host valence band (VB). For the (Ga,Mn)As-based device, the spectra show enhancement of the far-IR itinerant carrier response and broad mid-IR resonance upon hole accumulation, with a decrease of these features in the depletion polarity. These later spectral features demonstrate that conduction in ferromagnetic (FM) Ga1x_{1-x}Mnx_xAs is distinct from genuine metallic behavior due to extended states in the host VB. Furthermore, these data support the notion that a Mn-induced impurity band plays a vital role in the electron dynamics of FM Ga1x_{1-x}Mnx_xAs. We add, a sum-rule analysis of the spectra of our devices suggests that the Mn or Be doping does not lead to a substantial renormalization of the GaAs host VB

    Nitric Acid Particles in Cold Thick Ice Clouds Observed at Global Scale: Link with Lightning, Temperature, and Upper Tropospheric Water Vapor

    Get PDF
    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K
    corecore