15 research outputs found

    Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy : external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator

    Get PDF
    Aims: Arrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus. Methods and results: In a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sustained VA during a median follow-up of 5.02 (2.05-7.90) years following diagnosis of ARVC. External validation yielded good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65-0.75)] and calibration slope of 1.01 (95% CI 0.99-1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a superior net clinical benefit below risk threshold of 35%. Conclusion: Using a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic information and outperforms other published decision algorithms for ICD use. These findings support the use of the model to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC

    Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy: external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator

    Get PDF
    Aims Arrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus.Methods and results In a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sustained VA during a median follow-up of 5.02 (2.05-7.90) years following diagnosis of ARVC. External validation yielded good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65-0.75)] and calibration slope of 1.01 (95% CI 0.99-1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a superior net clinical benefit below risk threshold of 35%.Conclusion Using a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic information and outperforms other published decision algorithms for ICD use. These findings support the use of the model to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC

    Implantable cardioverter defibrillator use in arrhythmogenic right ventricular cardiomyopathy in North America and Europe

    Get PDF
    Background and aims: Implantable cardioverter-defibrillators (ICDs) are critical for preventing sudden cardiac death (SCD) in arrhythmogenic right ventricular cardiomyopathy (ARVC). This study aims to identify cross-continental differences in utilization of primary prevention ICDs and survival free from sustained ventricular arrhythmia (VA) in ARVC. Methods: This was a retrospective analysis of ARVC patients without prior VA enrolled in clinical registries from 11 countries throughout Europe and North America. Patients were classified according to whether they received treatment in North America or Europe and were further stratified by baseline predicted VA risk into low- (25%/5 years) groups. Differences in ICD implantation and survival free from sustained VA events (including appropriate ICD therapy) were assessed. Results: One thousand ninety-eight patients were followed for a median of 5.1 years; 554 (50.5%) received a primary prevention ICD, and 286 (26.0%) experienced a first VA event. After adjusting for baseline risk factors, North Americans were more than three times as likely to receive ICDs {hazard ratio (HR) 3.1 [95% confidence interval (CI) 2.5, 3.8]} but had only mildly increased risk for incident sustained VA [HR 1.4 (95% CI 1.1, 1.8)]. North Americans without ICDs were at higher risk for incident sustained VA [HR 2.1 (95% CI 1.3, 3.4)] than Europeans. Conclusions: North American ARVC patients were substantially more likely than Europeans to receive primary prevention ICDs across all arrhythmic risk strata. A lower rate of ICD implantation in Europe was not associated with a higher rate of VA events in those without ICDs

    Implantable cardioverter defibrillator use in arrhythmogenic right ventricular cardiomyopathy in North America and Europe

    Get PDF
    BACKGROUND AND AIMS: Implantable cardioverter-defibrillators (ICDs) are critical for preventing sudden cardiac death (SCD) in arrhythmogenic right ventricular cardiomyopathy (ARVC). This study aims to identify cross-continental differences in utilization of primary prevention ICDs and survival free from sustained ventricular arrhythmia (VA) in ARVC. METHODS: This was a retrospective analysis of ARVC patients without prior VA enrolled in clinical registries from 11 countries throughout Europe and North America. Patients were classified according to whether they received treatment in North America or Europe and were further stratified by baseline predicted VA risk into low- (25%/5 years) groups. Differences in ICD implantation and survival free from sustained VA events (including appropriate ICD therapy) were assessed. RESULTS: One thousand ninety-eight patients were followed for a median of 5.1 years; 554 (50.5%) received a primary prevention ICD, and 286 (26.0%) experienced a first VA event. After adjusting for baseline risk factors, North Americans were more than three times as likely to receive ICDs {hazard ratio (HR) 3.1 [95% confidence interval (CI) 2.5, 3.8]} but had only mildly increased risk for incident sustained VA [HR 1.4 (95% CI 1.1, 1.8)]. North Americans without ICDs were at higher risk for incident sustained VA [HR 2.1 (95% CI 1.3, 3.4)] than Europeans. CONCLUSIONS: North American ARVC patients were substantially more likely than Europeans to receive primary prevention ICDs across all arrhythmic risk strata. A lower rate of ICD implantation in Europe was not associated with a higher rate of VA events in those without ICDs

    Multicenter Experience With Catheter Ablation for Ventricular Tachycardia in Lamin A/C Cardiomyopathy

    No full text
    International audienceBackground: Lamin A/C (LMNA) cardiomyopathy is a genetic disease with a proclivity for ventricular arrhythmias. We describe the multicenter experience with percutaneous catheter ablation of sustained monomorphic ventricular tachycardia (VT) in LMNA cardiomyopathy.Methods and results: Twenty-five consecutive LMNA mutation patients from 4 centers were included (mean age, 55±9 years; ejection fraction, 34±12%; VT storm in 36%). Complete atrioventricular block was present in 11 patients; 3 patients were on mechanical circulatory support for severe heart failure. A median of 3 VTs were inducible per patient; in 82%, mapping was consistent with origin from scar in the basal left ventricle, particularly the septum, but also basal inferior wall and subaortic mitral continuity. After multiple procedures (median 2/patient; transcoronary alcohol in 6 and surgical cryoablation in 2 patients), acute success (noninducibility of any VT) was achieved in only 25% of patients. Partial success (inducibility of a nonclinical VT only: 50%) and failure (persistent inducibility of clinical VT: 12.5%) was attributed to intramural septal substrate in 13 of 18 patients (72%). Complications occurred in 25% of patients. After a median follow-up of 7 months after the last procedure, 91% experienced ≥1 VT recurrence, 44% received or were awaiting mechanical circulatory support or transplant for end-stage heart failure, and 26% died.Conclusions: Catheter ablation of VT associated with LMNA cardiomyopathy is associated with poor outcomes including high rate of arrhythmia recurrence, progression to end-stage heart failure, and high mortality. Basal septal scar and intramural VT origin makes VT ablation challenging in this population

    Long-Term Arrhythmic and Nonarrhythmic Outcomes of Lamin A/C Mutation Carriers.

    No full text
    BACKGROUND Mutations in LMNA are variably expressed and may cause cardiomyopathy, atrioventricular block (AVB), or atrial arrhythmias (AAs) and ventricular arrhythmias (VA). Detailed natural history studies of LMNA-associated arrhythmic and nonarrhythmic outcomes are limited, and the prognostic significance of the index cardiac phenotype remains uncertain. OBJECTIVES This study sought to describe the arrhythmic and nonarrhythmic outcomes of LMNA mutation carriers and to assess the prognostic significance of the index cardiac phenotype. METHODS The incidence of AVB, AA, sustained VA, left ventricular systolic dysfunction (LVD) (= left ventricular ejection fraction ≤50%), and end-stage heart failure (HF) was retrospectively determined in 122 consecutive LMNA mutation carriers followed at 5 referral centers for a median of 7 years from first clinical contact. Predictors of VA and end-stage HF or death were determined. RESULTS The prevalence of clinical manifestations increased broadly from index evaluation to median follow-up: AVB, 46% to 57%; AA, 39% to 63%; VA, 16% to 34%; and LVD, 44% to 57%. Implantable cardioverter-defibrillators were placed in 59% of patients for new LVD or AVB. End-stage HF developed in 19% of patients, and 13% died. In patients without LVD at presentation, 24% developed new LVD, and 7% developed end-stage HF. Male sex (p = 0.01), nonmissense mutations (p = 0.03), and LVD at index evaluation (p = 0.004) were associated with development of VA, whereas LVD was associated with end-stage HF or death (p < 0.001). Mode of presentation (with isolated or combination of clinical features) did not predict sustained VA or end-stage HF or death. CONCLUSIONS LMNA-related heart disease was associated with a high incidence of phenotypic progression and adverse arrhythmic and nonarrhythmic events over long-term follow-up. The index cardiac phenotype did not predict adverse events. Genetic diagnosis and subsequent follow-up, including anticipatory planning for therapies to prevent sudden death and manage HF, is warranted

    Sex Differences and Utility of Treadmill Testing in Long‐QT Syndrome

    No full text
    Background Diagnosis of congenital long‐QT syndrome (LQTS) is complicated by phenotypic ambiguity, with a frequent normal‐to‐borderline resting QT interval. A 3‐step algorithm based on exercise response of the corrected QT interval (QTc) was previously developed to diagnose patients with LQTS and predict subtype. This study evaluated the 3‐step algorithm in a population that is more representative of the general population with LQTS with milder phenotypes and establishes sex‐specific cutoffs beyond the resting QTc. Methods and Results We identified 208 LQTS likely pathogenic or pathogenic KCNQ1 or KCNH2 variant carriers in the Canadian NLQTS (National Long‐QT Syndrome) Registry and 215 unaffected controls from the HiRO (Hearts in Rhythm Organization) Registry. Exercise treadmill tests were analyzed across the 5 stages of the Bruce protocol. The predictive value of exercise ECG characteristics was analyzed using receiver operating characteristic curve analysis to identify optimal cutoff values. A total of 78% of male carriers and 74% of female carriers had a resting QTc value in the normal‐to‐borderline range. The 4‐minute recovery QTc demonstrated the best predictive value for carrier status in both sexes, with better LQTS ascertainment in female patients (area under the curve, 0.90 versus 0.82), with greater sensitivity and specificity. The optimal cutoff value for the 4‐minute recovery period was 440 milliseconds for male patients and 450 milliseconds for female patients. The 1‐minute recovery QTc had the best predictive value in female patients for differentiating LQTS1 versus LQTS2 (area under the curve, 0.82), and the peak exercise QTc had a marginally better predictive value in male patients for subtype with (area under the curve, 0.71). The optimal cutoff value for the 1‐minute recovery period was 435 milliseconds for male patients and 455 milliseconds for femal patients. Conclusions The 3‐step QT exercise algorithm is a valid tool for the diagnosis of LQTS in a general population with more frequent ambiguity in phenotype. The algorithm is a simple and reliable method for the identification and prediction of the 2 major genotypes of LQTS

    Sex Differences and Utility of Treadmill Testing in Long‐QT Syndrome

    No full text
    BACKGROUND: Diagnosis of congenital long‐QT syndrome (LQTS) is complicated by phenotypic ambiguity, with a frequent normal‐to‐borderline resting QT interval. A 3‐step algorithm based on exercise response of the corrected QT interval (QTc) was previously developed to diagnose patients with LQTS and predict subtype. This study evaluated the 3‐step algorithm in a population that is more representative of the general population with LQTS with milder phenotypes and establishes sex‐specific cutoffs beyond the resting QTc. METHODS AND RESULTS: We identified 208 LQTS likely pathogenic or pathogenic KCNQ1 or KCNH2 variant carriers in the Canadian NLQTS (National Long‐QT Syndrome) Registry and 215 unaffected controls from the HiRO (Hearts in Rhythm Organization) Registry. Exercise treadmill tests were analyzed across the 5 stages of the Bruce protocol. The predictive value of exercise ECG characteristics was analyzed using receiver operating characteristic curve analysis to identify optimal cutoff values. A total of 78% of male carriers and 74% of female carriers had a resting QTc value in the normal‐to‐borderline range. The 4‐minute recovery QTc demonstrated the best predictive value for carrier status in both sexes, with better LQTS ascertainment in female patients (area under the curve, 0.90 versus 0.82), with greater sensitivity and specificity. The optimal cutoff value for the 4‐minute recovery period was 440 milliseconds for male patients and 450 milliseconds for female patients. The 1‐minute recovery QTc had the best predictive value in female patients for differentiating LQTS1 versus LQTS2 (area under the curve, 0.82), and the peak exercise QTc had a marginally better predictive value in male patients for subtype with (area under the curve, 0.71). The optimal cutoff value for the 1‐minute recovery period was 435 milliseconds for male patients and 455 milliseconds for femal patients. CONCLUSIONS: The 3‐step QT exercise algorithm is a valid tool for the diagnosis of LQTS in a general population with more frequent ambiguity in phenotype. The algorithm is a simple and reliable method for the identification and prediction of the 2 major genotypes of LQTS
    corecore