43 research outputs found

    Perinatal Exogenous Nitric Oxide in Fawn-Hooded Hypertensive Rats Reduces Renal Ribosomal Biogenesis in Early Life

    Get PDF
    Nitric oxide (NO) is known to depress ribosome biogenesis in vitro. In this study we analyzed the influence of exogenous NO on ribosome biogenesis in vivo using a proven antihypertensive model of perinatal NO administration in genetically hypertensive rats. Fawn-hooded hypertensive rat (FHH) dams were supplied with the NO-donor molsidomine in drinking water from 2 weeks before to 4 weeks after birth, and the kidneys were subsequently collected from 2 day, 2 week, and 9 to 10-month-old adult offspring. Although the NO-donor increased maternal NO metabolite excretion, the NO status of juvenile renal (and liver) tissue was unchanged as assayed by EPR spectroscopy of NO trapped with iron-dithiocarbamate complexes. Nevertheless, microarray analysis revealed marked differential up-regulation of renal ribosomal protein genes at 2 days and down-regulation at 2 weeks and in adult males. Such differential regulation of renal ribosomal protein genes was not observed in females. These changes were confirmed in males at 2 weeks by expression analysis of renal ribosomal protein L36a and by polysome profiling, which also revealed a down-regulation of ribosomes in females at that age. However, renal polysome profiles returned to normal in adults after early exposure to molsidomine. No direct effects of molsidomine were observed on cellular proliferation in kidneys at any age, and the changes induced by molsidomine in renal polysome profiles at 2 weeks were absent in the livers of the same rats. Our results suggest that the previously found prolonged antihypertensive effects of perinatal NO administration may be due to epigenetically programmed alterations in renal ribosome biogenesis during a critical fetal period of renal development, and provide a salient example of a drug-induced reduction of ribosome biogenesis that is accompanied by a beneficial long-term health effect in both males and females

    A Conserved Mito-Cytosolic Translational Balance Links Two Longevity Pathways.

    Get PDF
    Slowing down translation in either the cytosol or the mitochondria is a conserved longevity mechanism. Here, we found a non-interventional natural correlation of mitochondrial and cytosolic ribosomal proteins (RPs) in mouse population genetics, suggesting a translational balance. Inhibiting mitochondrial translation in C. elegans through mrps-5 RNAi repressed cytosolic translation. Transcriptomics integrated with proteomics revealed that this inhibition specifically reduced translational efficiency of mRNAs required in growth pathways while increasing stress response mRNAs. The repression of cytosolic translation and extension of lifespan from mrps-5 RNAi were dependent on atf-5/ATF4 and independent from metabolic phenotypes. We found the translational balance to be conserved in mammalian cells upon inhibiting mitochondrial translation pharmacologically with doxycycline. Lastly, extending this in vivo, doxycycline repressed cytosolic translation in the livers of germ-free mice. These data demonstrate that inhibiting mitochondrial translation initiates an atf-5/ATF4-dependent cascade leading to coordinated repression of cytosolic translation, which could be targeted to promote longevity

    Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism

    Get PDF
    Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts

    The role of the ribosome in the regulation of longevity and lifespan extension

    No full text
    The most energy-consuming process that a cell must undertake to stay viable is the continuous biogenesis of ribosomes for the translation of RNA into protein. Given the inextricable links between energy consumption and cellular lifespan, it is not surprising that mutations and environmental cues that reduce ribosome biogenesis result in an extension of eukaryotic lifespan. This review goes into detail describing recent discoveries of different and often unexpected elements that play a role in the regulation of longevity by virtue of their ribosome biogenesis functions. These roles include controlling the transcription and processing of ribosomal RNA (rRNA), the translation of ribosomal protein (RP) genes, and the number of ribosomes overall. Together these findings suggest that a fundamental mechanism across eukaryotic species for extending lifespan is to slow down or halt the expenditure of cellular energy that is normally absorbed by the manufacturing and assembly of new ribosomes. WIREs RNA 2016, 7:198-212. doi: 10.1002/wrna.1325 For further resources related to this article, please visit the WIREs websit

    A comparative study of nucleostemin family members in zebrafish reveals specific roles in ribosome biogenesis

    Get PDF
    Nucleostemin (NS) is an essential protein for the growth and viability of developmental stem cells. Its functions are multi-faceted, including important roles in ribosome biogenesis and in the p53-induced apoptosis pathway. While NS has been well studied, the functions of its family members GNL2 and GNL3-like (GNL3L) remain relatively obscure despite a high degree of sequence and domain homology. Here, we use zebrafish lines carrying mutations in the ns family to compare and contrast their functions in vertebrates. We find the loss of zebrafish ns or gnl2 has a major impact on 60S large ribosomal subunit formation and/or function due to cleavage impairments at distinct sites of pre-rRNA transcript. In both cases this leads to a reduction of total protein synthesis. In contrast, gnl3l loss shows relatively minor rRNA processing delays that ultimately have no appreciable effects on ribosome biogenesis or protein synthesis. However, the loss of gnl3l still results in p53 stabilization, apoptosis, and lethality similarly to ns and gnl2 loss. The depletion of p53 in all three of the mutants led to partial rescues of the morphological phenotypes and surprisingly, a rescue of the 60S subunit collapse in the ns mutants. We show that this rescue is due to an unexpected effect of p53 loss that even in wild type embryos results in an increase of 60S subunits. Our study presents an in-depth description of the mechanisms through which ns and gnl2 function in vertebrate ribosome biogenesis and shows that despite the high degree of sequence and domain homology, gnl3l has critical functions in development that are unrelated to the ribosome

    Mitochondrial ubiquinone-mediated longevity is marked by reduced cytoplasmic mRNA translation

    No full text
    Mutations in the clk-1 gene impair mitochondrial ubiquinone biosynthesis and extend lifespan in C. elegans. We demonstrate here that this life extension is linked to the repression of cytoplasmic mRNA translation, independent of the alleged nuclear form of CLK-1. Clk-1 mutations inhibit polyribosome formation similarly to daf-2 mutations that dampen insulin signaling. Comparisons of total versus polysomal RNAs in clk-1(qm30) mutants reveal a reduction in the translational efficiencies of mRNAs coding for elements of the translation machinery and an increase in those coding for the oxidative phosphorylation and autophagy pathways. Knocking down the transcription initiation factor TAF-4, a protein that becomes sequestered in the cytoplasm during early embryogenesis to induce transcriptional silencing, ameliorates the clk-1 inhibition of polyribosome formation. These results underscore a prominent role for the repression of cytoplasmic protein synthesis in eukaryotic lifespan extension and suggest that mutations impairing mitochondrial function are able to exploit this repression similarly to reductions of insulin signaling. Moreover, this report reveals an unexpected role for TAF-4 as a repressor of polyribosome formation when ubiquinone biosynthesis is compromised.status: publishe

    Mitochondrial ubiquinone–mediated longevity is marked by reduced cytoplasmic mRNA translation

    No full text
    Mutations in the clk-1 gene impair mitochondrial ubiquinone biosynthesis and extend the lifespan in Caenorhabditis elegans. We demonstrate here that this life extension is linked to the repression of cytoplasmic mRNA translation, independent of the alleged nuclear form of CLK-1. Clk-1 mutations inhibit polyribosome formation similarly to daf-2 mutations that dampen insulin signaling. Comparisons of total versus polysomal RNAs in clk-1(qm30) mutants reveal a reduction in the translational efficiencies of mRNAs coding for elements of the translation machinery and an increase in those coding for the oxidative phosphorylation and autophagy pathways. Knocking down the transcription initiation factor TATA-binding protein-associated factor 4, a protein that becomes sequestered in the cytoplasm during early embryogenesis to induce transcriptional silencing, ameliorates the clk-1 inhibition of polyribosome formation. These results underscore a prominent role for the repression of cytoplasmic protein synthesis in eukaryotic lifespan extension and suggest that mutations impairing mitochondrial function are able to exploit this repression similarly to reductions of insulin signaling. Moreover, this report reveals an unexpected role for TATA-binding protein-associated factor 4 as a repressor of polyribosome formation when ubiquinone biosynthesis is compromised

    Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    No full text
    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes
    corecore