838 research outputs found

    Calculation of the Density of States Using Discrete Variable Representation and Toeplitz Matrices

    Full text link
    A direct and exact method for calculating the density of states for systems with localized potentials is presented. The method is based on explicit inversion of the operator EHE-H. The operator is written in the discrete variable representation of the Hamiltonian, and the Toeplitz property of the asymptotic part of the obtained {\it infinite} matrix is used. Thus, the problem is reduced to the inversion of a {\it finite} matrix

    Bianchi I Quantum cosmology in the Bergmann-Wagoner theory

    Get PDF
    The Wheeler-DeWitt equation is considered in the context of generalized scalar-tensor theories of gravitation for Bianchi type I cosmology. Exact solutions are found for two selfinteracting potentials and arbitary coupling function. The WKB wavefunctions are obtained and a family of solutions satisfying the Hawking-Page regularity conditions of wormholes are found.Comment: 12 pages, Latex fil

    Microfabrication technology for large LEKID arrays : from NIKA2 to future applications

    Full text link
    The Lumped Element Kinetic Inductance Detectors (LEKID)demonstrated full maturity in the NIKA (New IRAM KID Arrays)instrument. These results allow directly comparing LEKID performance with other competing technologies (TES, doped silicon) in the mm and sub-mm range. A continuing effort is ongoing to improve the microfabrication technologies and concepts in order to satisfy the requirements of new instruments. More precisely, future satellites dedicated to CMB (Cosmic Microwave Background) studies will require the same focal plane technology to cover, at least, the frequency range of 60 to 600 GHz. Aluminium LEKID developed for NIKA have so far demonstrated, under real telescope conditions, performance approaching photon-noise limitation in the band 120-300 GHz. By implementing superconducting bi-layers we recently demonstrated LEKID arrays working in the range 80-120 GHz and with sensitivities approaching the goals for CMB missions. NIKA itself (350 pixels) is followed by a more ambitious project requiring several thousands (3000-5000) pixels. NIKA2 has been installed in October 2015 at the IRAM 30-m telescope. We will describe in detail the technological improvements that allowed a relatively harmless 10-fold up-scaling in pixels count without degrading the initial sensitivity. In particular we will briefly describe a solution to simplify the difficult fabrication step linked to the slot-line propagation mode in coplanar waveguide

    NIKA2: a mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations ({\it e.g.} SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z0.5z0.5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2.

    Interactions of Bacillus Mojavensis and Fusarium Verticillioides With a Benzoxazolinone (Boa) and Its Transformation Product, Apo

    Get PDF
    En:Journal of Chemical Ecology (2007, vol. 33, n. 10, p. 1885-1897)The benzoxazolinones, specifically benzoxazolin-2(3H)-one (BOA), are important transformation products of the benzoxazinones that can serve as allelochemicals providing resistance to maize from pathogenic bacteria, fungi, and insects. However, maize pathogens such as Fusarium verticillioides are capable of detoxifying the benzoxazolinones to 2-aminophenol (AP), which is converted to the less toxic N-(2-hydroxyphenyl) malonamic acid (HPMA) and 2-acetamidophenol (HPAA). As biocontrol strategies that utilize a species of endophytic bacterium, Bacillus mojavensis, are considered efficacious as a control of this Fusarium species, the in vitro transformation and effects of BOA on growth of this bacterium was examined relative to its interaction with strains of F. verticillioides. The results showed that a red pigment was produced and accumulated only on BOA-amended media when wild type and the progeny of genetic crosses of F. verticillioides are cultured in the presence of the bacterium. The pigment was identified as 2-amino-3H-phenoxazin-3-one (APO), which is a stable product. The results indicate that the bacterium interacts with the fungus preventing the usual transformation of AP to the nontoxic HPMA, resulting in the accumulation of higher amounts of APO than when the fungus is cultured alone. APO is highly toxic to F. verticillioides and other organisms. Thus, an enhanced biocontrol is suggested by this in vitro study. =580 $aEn:Journal of Chemical Ecolog

    Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces.

    Get PDF
    This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/am506622x.UV nanosecond laser pulses have been used to produce a unique surface nanostructuration of Ag@ZnO supported nanorods (NRs). The NRs were fabricated by plasma enhanced chemical vapor deposition (PECVD) at low temperature applying a silver layer as promoter. The irradiation of these structures with single nanosecond pulses of an ArF laser produces the melting and reshaping of the end of the NRs that aggregate in the form of bundles terminated by melted ZnO spherical particles. Well-defined silver nanoparticles (NPs), formed by phase separation at the surface of these melted ZnO particles, give rise to a broad plasmonic response consistent with their anisotropic shape. Surface enhanced Raman scattering (SERS) in the as-prepared Ag@ZnO NRs arrays was proved by using a Rhodamine 6G (Rh6G) chromophore as standard analyte. The surface modifications induced by laser treatment improve the stability of this system as SERS substrate while preserving its activity.We thank the Junta de Andalucía (TEP8067, FQM-6900 and P12-FQM-2265) and the Spanish Ministry of Economy and Competitiveness (Projects CONSOLIDER-CSD 2008-00023, MAT2011-28345-C02-02, MAT2013-40852-R, MAT2013-42900-P and RECUPERA 2020) for financial support. The authors also thank the European Union Seventh Framework Programme under Grant Agreements 312483-ESTEEM2 (Integrated Infrastructure Initiative-I3) and REGPOT-CT-2011-285895-Al-NANOFUNC, and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement 291522 - 3DIMAGE. R. J. Peláez acknowledges the grant JCI-2012_13034 from the Juan de la Cierva program
    corecore