35 research outputs found

    Pathophysiology of plasma hypercoagulability in thrombosis

    Get PDF
    Blood coagulation abnormalities are the leading cause of death world-wide. Elevated procoagulant factor levels (hypercoagulability) have been correlated with increased thrombin generation and increased risk of arterial and venous thrombosis. This dissertation explores the role of hypercoagulability on various aspects of coagulation and thrombosis in vitro and in vivo. Thrombin generation tests are increasingly being employed as a high throughput, global measure of procoagulant activity. Thrombin generation was measured using calibrated automated thrombography (CAT) in platelet-free plasma (PFP) and platelet-rich plasma (PRP). The relative sensitivity of CAT parameters to elevated factors XI, IX, VIII, X, and prothrombin was: PFP initiated with 1 pM tissue factor (TF) > PFP initiated with 5 pM TF > PRP initiated with 1 pM TF. Monitoring the peak height following initiation with 1 pM TF in PFP was most likely to detect hypercoagulability (increased procoagulant factors). Epidemiologic studies have correlated elevated plasma fibrinogen (hyperfibrinogenemia) with risk of arterial and venous thrombosis. However, it is unknown whether hyperfibrinogenemia is a biomarker of disease or causative in the etiology. In mice, hyperfibrinogenemia significantly shortened the time to occlusion (TTO) after FeCl3 injury to the saphenous vein and carotid artery. Hyperfibrinogenemia increased thrombus fibrin content, promoted faster fibrin formation, and increased fibrin network density, strength, and stability and increased thrombus thrombolysis resistance in vivo. These data indicate hyperfibrinogenemia directly promotes thrombosis and thrombolysis resistance via enhanced fibrin formation and stability. Studies have correlated elevated plasma factor VIII (FVIII) with thrombosis. However, like hyperfibrinogenemia, it is unclear whether elevated FVIII is a biomarker or causative agent. In mice, elevated FVIII had no effect on 3-minute FeCl3 carotid artery injury, but shortened the TTO after 2-minute injury. Additionally, elevated FVIII increased circulating thrombin-antithrombin complexes and stabilized clots after 2- but not 3-minute FeCl3 injury. In vitro, elevated FVIII increased thrombin generation and accelerated platelet aggregation only when initiated by low TF. These results demonstrate dependence of FVIII thrombogenicity on extent of vascular injury. These findings provide a better understanding of how plasma hypercoagulability impacts thrombogenesis. Specifically, these data suggest causative yet differential roles for hyperfibrinogenemia and elevated FVIII in thrombosis

    Procoagulant Activity in Hemostasis and Thrombosis: Virchowʼs Triad Revisited

    Get PDF
    Virchow’s triad is traditionally invoked to explain pathophysiologic mechanisms leading to thrombosis, alleging concerted roles for abnormalities in blood composition, vessel wall components, and blood flow in the development of arterial and venous thrombosis. Given the tissue-specific bleeding observed in hemophilia patients, it may be instructive to consider the principles of Virchow’s triad when investigating mechanisms operant in hemostatic disorders as well. Blood composition (the function of circulating blood cells and plasma proteins) is the most well-studied component of the triad. For example, increased levels of plasma procoagulant proteins such as prothrombin and fibrinogen are established risk factors for thrombosis, whereas deficiencies in plasma factors VIII and IX result in bleeding (hemophilia A and B, respectively). Vessel wall (cellular) components contribute adhesion molecules that recruit circulating leukocytes and platelets to sites of vascular damage, tissue factor, which provides a procoagulant signal of vascular breach, and a surface upon which coagulation complexes are assembled. Blood flow is often characterized by two key variables: shear rate and shear stress. Shear rate affects several aspects of coagulation, including transport rates of platelets and plasma proteins to and from the injury site, platelet activation, and the kinetics of fibrin monomer formation and polymerization. Shear stress modulates adhesion rates of platelets and expression of adhesion molecules and procoagulant activity on endothelial cells lining the blood vessels. That no one abnormality in any component of Virchow’s triad fully predicts coagulopathy a priori suggests coagulopathies are complex, multifactorial and interactive. In this review, we focus on contributions of blood composition, vascular cells, and blood flow to hemostasis and thrombosis, and suggests cross-talk among the three components of Virchow’s triad is necessary for hemostasis and determines propensity for thrombosis or bleeding. Investigative models that permit interplay among these components are necessary to understand the operant pathophysiology, and effectively treat and prevent thrombotic and bleeding disorders

    Venous thromboembolism research priorities: A scientific statement from the American Heart Association and the International Society on Thrombosis and Haemostasis

    Full text link
    Venous thromboembolism (VTE) is a major cause of morbidity and mortality. The impact of the Surgeon General’s Call to Action in 2008 has been lower than expected given the public health impact of this disease. This scientific statement highlights future research priorities in VTE, developed by experts and a crowdsourcing survey across 16 scientific organizations. At the fundamental research level (T0), researchers need to identify pathobiologic causative mechanisms for the 50% of patients with unprovoked VTE and better understand mechanisms that differentiate hemostasis from thrombosis. At the human level (T1), new methods for diagnosing, treating, and preventing VTE will allow tailoring of diagnostic and therapeutic approaches to individuals. At the patient level (T2), research efforts are required to understand how foundational evidence impacts care of patients (eg, biomarkers). New treatments, such as catheter‐based therapies, require further testing to identify which patients are most likely to experience benefit. At the practice level (T3), translating evidence into practice remains challenging. Areas of overuse and underuse will require evidence‐based tools to improve care delivery. At the community and population level (T4), public awareness campaigns need thorough impact assessment. Large population‐based cohort studies can elucidate the biologic and environmental underpinings of VTE and its complications. To achieve these goals, funding agencies and training programs must support a new generation of scientists and clinicians who work in multidisciplinary teams to solve the pressing public health problem of VTE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156163/2/rth212373_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156163/1/rth212373.pd

    Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells

    Get PDF
    Summary Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness

    Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies

    Get PDF
    A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow— stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFβ stimulation and engraftment with myelofibrosis but not healthy donor–derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow–like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE: We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics.</p

    In vitro culture of murine megakaryocytes from fetal liver-derived hematopoietic stem cells

    No full text
    Megakaryocytes (MKs) are specialized precursor cells committed to producing and proliferating platelets. In a cytoskeletal-driven process, mature MKs generate platelets by releasing thin cytoplasmic extensions, named proplatelets, into the sinusoids. Due to knowledge gaps in this process and mounting clinical demand for non-donor-based platelet sources, investigators are successfully developing artificial culture systems to recreate the environment of platelet biogenesis. Nevertheless, drawbacks in current methods entail elaborate procedures for stem cell enrichment, extensive growth periods, low MK yield, and poor proplatelet production. We propose a simple, robust method of primary MK culture that utilizes fetal livers from pregnant mice. Our technique reduces expansion time to 4 days, and generates ~15,000–20,000 MKs per liver. Approximately, 20–50% of these MKs produce structurally dense, high-quality proplatelets. In this review, we outline our method of MK culture and isolation
    corecore