523 research outputs found
The random phase approximation applied to ice
Standard density functionals without van der Waals interactions yield an
unsatisfactory description of ice phases, specifically, high density phases
occurring under pressure are too unstable compared to the common low density
phase I observed at ambient conditions. Although the description is
improved by using functionals that include van der Waals interactions, the
errors in relative volumes remain sizable. Here we assess the random phase
approximation (RPA) for the correlation energy and compare our results to
experimental data as well as diffusion Monte Carlo data for ice. The RPA yields
a very balanced description for all considered phases, approaching the accuracy
of diffusion Monte Carlo in relative energies and volumes. This opens a route
towards a concise description of molecular water phases on surfaces and in
cavities
In-flight calibration of STEREO-B/WAVES antenna system
The STEREO/WAVES (SWAVES) experiment on board the two STEREO spacecraft
(Solar Terrestrial Relations Observatory) launched on 25 October 2006 is
dedicated to the measurement of the radio spectrum at frequencies between a few
kilohertz and 16 MHz. The SWAVES antenna system consists of 6 m long orthogonal
monopoles designed to measure the electric component of the radio waves. With
this configuration direction finding of radio sources and polarimetry (analysis
of the polarization state) of incident radio waves is possible. For the
evaluation of the SWAVES data the receiving properties of the antennas,
distorted by the radiation coupling with the spacecraft body and other onboard
devices, have to be known accurately. In the present context, these properties
are described by the antenna effective length vectors. We present the results
of an in-flight calibration of the SWAVES antennas using the observations of
the nonthermal terrestrial auroral kilometric radiation (AKR) during STEREO
roll maneuvers in an early stage of the mission. A least squares method
combined with a genetic algorithm was applied to find the effective length
vectors of the STEREO Behind (STEREO-B)/WAVES antennas in a quasi-static
frequency range () which fit best to the model
and observed AKR intensity profiles. The obtained results confirm the former
SWAVES antenna analysis by rheometry and numerical simulations. A final set of
antenna parameters is recommended as a basis for evaluations of the SWAVES
data
A study of the influence of the gauge group on the Dyson-Schwinger equations for scalar-Yang-Mills systems
The particular choice of the gauge group for Yang-Mills theory plays an
important role when it comes to the influence of matter fields. In particular,
both the chosen gauge group and the representation of the matter fields yield
structural differences in the quenched case. Especially, the qualitative
behavior of the Wilson potential is strongly dependent on this selection.
Though the algebraic reasons for this observation is clear, it is far from
obvious how this behavior can be described besides using numerical simulations.
Herein, it is investigated how the group structure appears in the
Dyson-Schwinger equations, which as a hierarchy of equations for the
correlation functions have to be satisfied. It is found that there are
differences depending on both the gauge group and the representation of the
matter fields. This provides insight into possible truncation schemes for
practical calculations using these equations.Comment: 47 page
Collection efficiency and design of microbial air samplers
The variables affecting the physical collection efficiency of air samplers of the type that impact microbe-carrying particles onto agar were investigated using a simplified analytical method and computational fluid dynamics. The results from these two techniques were compared, as were the effect of jet velocity, nozzle size, and nozzle distance from the agar surface; also considered was the optimisation of these variables to obtain an efficient design of sampler. A technique is described that calculates the proportion of microbe-carrying particles that a sampler will collect from a typical size distribution of microbe-carrying particles found in an occupied room; the three air samplers studied were found to collect from about 22% to over 99% of the micro-organisms in the room air
Safety and Security Co-engineering and Argumentation Framework
Automotive systems become increasingly complex due to their functional range and data exchange with the outside world. Until now, functional safety of such safety-critical electrical/electronic systems has been covered successfully. However, the data exchange requires interconnection across trusted boundaries of the vehicle. This leads to security issues like hacking and malicious attacks against interfaces, which could bring up new types of safety issues. Before mass-production of automotive systems, arguments supported by evidences are required regarding safety and security. Product engineering must be compliant to specific standards and must support arguments that the system is free of unreasonable risks.
This paper shows a safety and security co-engineering framework, which covers standard compliant process derivation and management, and supports product specific safety and security co-analysis. Furthermore, we investigate process- and product-related argumentation and apply the approach to an automotive use case regarding safety and security.This work is supported by the projects EMC2 and AMASS. Research leading to these results has received funding from the EU ARTEMIS Joint Undertaking under grant agreement no. 621429 (project EMC2), project AMASS (H2020-ECSEL no 692474; Spain’s MINECO ref. PCIN-2015-262) and from the COMET K2 - Competence Centres for Excellent Technologies Programme of the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry of Science, Research and Economy (bmwfw), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG)
The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs
We present an interdisciplinary review of the generalized Cerenkov emission
of radiation from uniformly moving sources in the different contexts of
classical electromagnetism, superfluid hydrodynamics, and classical
hydrodynamics. The details of each specific physical systems enter our theory
via the dispersion law of the excitations. A geometrical recipe to obtain the
emission patterns in both real and wavevector space from the geometrical shape
of the dispersion law is discussed and applied to a number of cases of current
experimental interest. Some consequences of these emission processes onto the
stability of condensed-matter analogs of gravitational systems are finally
illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como,
Italy from May 16th-21th, 201
Comments on Yang-Mills thermodynamics, the Hagedorn spectrum and the gluon gas
We discuss the dependence of pure Yang-Mills equation of state on the choice
of gauge algebra. In the confined phase, we generalize to an arbitrary simple
gauge algebra Meyer's proposal of modelling the Yang-Mills matter by an ideal
glueball gas in which the high-lying glueball spectrum is approximated by a
Hagedorn spectrum of closed-bosonic-string type. Such a formalism is undefined
above the Hagedorn temperature, corresponding to the phase transition toward a
deconfined state of matter in which gluons are the relevant degrees of freedom.
Under the assumption that the adjoint string tension and the typical energy
scale of the running coupling are gauge-algebra independent, we discuss about
how the behavior of thermodynamical quantities such as the trace anomaly should
depend on the gauge algebra in both the confined and deconfined phase. The
obtained results compare favourably with recent and accurate lattice data in
the case and support the idea that the more the gauge
algebra has generators, the more the phase transition is of first-order type.Comment: Discussion extended in v2 ; to appear in Phys Lett
Programmable Edge-to-Cloud Virtualization for 5G Media Industry: The 5G-MEDIA Approach
To ensure high Quality of Experience (QoE) for end users, many media applications require significant quantities of computing and network resources, making their realization challenging in resource constrained environments. In this paper, we present the approach of the 5G-MEDIA project, providing an integrated programmable service platform for the development, design and operations of media applications in 5G networks, facilitating media service management across the service life cycle. The platform offers tools to service developers for efficient development, testing and continuous correction of services. One step further, it provides a service virtualization platform offering horizontal services, such as a Media Service Catalogue and accounting services, as well as optimization mechanisms to flexibly adapt service operations to dynamic conditions with efficient use of infrastructure resources. The paper outlines three use cases where the platform was tested and validated
On Horava-Lifshitz "Black Holes"
The most general spherically symmetric solution with zero shift is found in
the non-projectable Horava-Lifshitz class of theories with general coupling
constants. It contains as special cases, spherically symmetric solutions found
by other authors earlier. It is found that the generic solution has
conventional (AdS, dS or flat) asymptotics with a universal 1/r tail. There are
several special cases where the asymptotics differ, including the detailed
balance choice of couplings. The conventional thermodynamics of this general
class of solutions is established by calculating the energy, temperature and
entropy. Although several of the solutions have conventional horizons, for
particles with ultra-luminal dispersion relations such solutions appear to be
horizonless.Comment: Latex 41 pages, 5 figure
- …