523 research outputs found

    The random phase approximation applied to ice

    Full text link
    Standard density functionals without van der Waals interactions yield an unsatisfactory description of ice phases, specifically, high density phases occurring under pressure are too unstable compared to the common low density phase Ih_h observed at ambient conditions. Although the description is improved by using functionals that include van der Waals interactions, the errors in relative volumes remain sizable. Here we assess the random phase approximation (RPA) for the correlation energy and compare our results to experimental data as well as diffusion Monte Carlo data for ice. The RPA yields a very balanced description for all considered phases, approaching the accuracy of diffusion Monte Carlo in relative energies and volumes. This opens a route towards a concise description of molecular water phases on surfaces and in cavities

    In-flight calibration of STEREO-B/WAVES antenna system

    Full text link
    The STEREO/WAVES (SWAVES) experiment on board the two STEREO spacecraft (Solar Terrestrial Relations Observatory) launched on 25 October 2006 is dedicated to the measurement of the radio spectrum at frequencies between a few kilohertz and 16 MHz. The SWAVES antenna system consists of 6 m long orthogonal monopoles designed to measure the electric component of the radio waves. With this configuration direction finding of radio sources and polarimetry (analysis of the polarization state) of incident radio waves is possible. For the evaluation of the SWAVES data the receiving properties of the antennas, distorted by the radiation coupling with the spacecraft body and other onboard devices, have to be known accurately. In the present context, these properties are described by the antenna effective length vectors. We present the results of an in-flight calibration of the SWAVES antennas using the observations of the nonthermal terrestrial auroral kilometric radiation (AKR) during STEREO roll maneuvers in an early stage of the mission. A least squares method combined with a genetic algorithm was applied to find the effective length vectors of the STEREO Behind (STEREO-B)/WAVES antennas in a quasi-static frequency range (Lantenna≪λwaveL_{antenna} \ll \lambda_{wave}) which fit best to the model and observed AKR intensity profiles. The obtained results confirm the former SWAVES antenna analysis by rheometry and numerical simulations. A final set of antenna parameters is recommended as a basis for evaluations of the SWAVES data

    A study of the influence of the gauge group on the Dyson-Schwinger equations for scalar-Yang-Mills systems

    Full text link
    The particular choice of the gauge group for Yang-Mills theory plays an important role when it comes to the influence of matter fields. In particular, both the chosen gauge group and the representation of the matter fields yield structural differences in the quenched case. Especially, the qualitative behavior of the Wilson potential is strongly dependent on this selection. Though the algebraic reasons for this observation is clear, it is far from obvious how this behavior can be described besides using numerical simulations. Herein, it is investigated how the group structure appears in the Dyson-Schwinger equations, which as a hierarchy of equations for the correlation functions have to be satisfied. It is found that there are differences depending on both the gauge group and the representation of the matter fields. This provides insight into possible truncation schemes for practical calculations using these equations.Comment: 47 page

    Collection efficiency and design of microbial air samplers

    Get PDF
    The variables affecting the physical collection efficiency of air samplers of the type that impact microbe-carrying particles onto agar were investigated using a simplified analytical method and computational fluid dynamics. The results from these two techniques were compared, as were the effect of jet velocity, nozzle size, and nozzle distance from the agar surface; also considered was the optimisation of these variables to obtain an efficient design of sampler. A technique is described that calculates the proportion of microbe-carrying particles that a sampler will collect from a typical size distribution of microbe-carrying particles found in an occupied room; the three air samplers studied were found to collect from about 22% to over 99% of the micro-organisms in the room air

    Safety and Security Co-engineering and Argumentation Framework

    Get PDF
    Automotive systems become increasingly complex due to their functional range and data exchange with the outside world. Until now, functional safety of such safety-critical electrical/electronic systems has been covered successfully. However, the data exchange requires interconnection across trusted boundaries of the vehicle. This leads to security issues like hacking and malicious attacks against interfaces, which could bring up new types of safety issues. Before mass-production of automotive systems, arguments supported by evidences are required regarding safety and security. Product engineering must be compliant to specific standards and must support arguments that the system is free of unreasonable risks. This paper shows a safety and security co-engineering framework, which covers standard compliant process derivation and management, and supports product specific safety and security co-analysis. Furthermore, we investigate process- and product-related argumentation and apply the approach to an automotive use case regarding safety and security.This work is supported by the projects EMC2 and AMASS. Research leading to these results has received funding from the EU ARTEMIS Joint Undertaking under grant agreement no. 621429 (project EMC2), project AMASS (H2020-ECSEL no 692474; Spain’s MINECO ref. PCIN-2015-262) and from the COMET K2 - Competence Centres for Excellent Technologies Programme of the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry of Science, Research and Economy (bmwfw), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG)

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201

    Comments on Yang-Mills thermodynamics, the Hagedorn spectrum and the gluon gas

    Get PDF
    We discuss the dependence of pure Yang-Mills equation of state on the choice of gauge algebra. In the confined phase, we generalize to an arbitrary simple gauge algebra Meyer's proposal of modelling the Yang-Mills matter by an ideal glueball gas in which the high-lying glueball spectrum is approximated by a Hagedorn spectrum of closed-bosonic-string type. Such a formalism is undefined above the Hagedorn temperature, corresponding to the phase transition toward a deconfined state of matter in which gluons are the relevant degrees of freedom. Under the assumption that the adjoint string tension and the typical energy scale of the running coupling are gauge-algebra independent, we discuss about how the behavior of thermodynamical quantities such as the trace anomaly should depend on the gauge algebra in both the confined and deconfined phase. The obtained results compare favourably with recent and accurate lattice data in the su(3)\mathfrak{su}(3) case and support the idea that the more the gauge algebra has generators, the more the phase transition is of first-order type.Comment: Discussion extended in v2 ; to appear in Phys Lett

    Programmable Edge-to-Cloud Virtualization for 5G Media Industry: The 5G-MEDIA Approach

    Get PDF
    To ensure high Quality of Experience (QoE) for end users, many media applications require significant quantities of computing and network resources, making their realization challenging in resource constrained environments. In this paper, we present the approach of the 5G-MEDIA project, providing an integrated programmable service platform for the development, design and operations of media applications in 5G networks, facilitating media service management across the service life cycle. The platform offers tools to service developers for efficient development, testing and continuous correction of services. One step further, it provides a service virtualization platform offering horizontal services, such as a Media Service Catalogue and accounting services, as well as optimization mechanisms to flexibly adapt service operations to dynamic conditions with efficient use of infrastructure resources. The paper outlines three use cases where the platform was tested and validated

    On Horava-Lifshitz "Black Holes"

    Full text link
    The most general spherically symmetric solution with zero shift is found in the non-projectable Horava-Lifshitz class of theories with general coupling constants. It contains as special cases, spherically symmetric solutions found by other authors earlier. It is found that the generic solution has conventional (AdS, dS or flat) asymptotics with a universal 1/r tail. There are several special cases where the asymptotics differ, including the detailed balance choice of couplings. The conventional thermodynamics of this general class of solutions is established by calculating the energy, temperature and entropy. Although several of the solutions have conventional horizons, for particles with ultra-luminal dispersion relations such solutions appear to be horizonless.Comment: Latex 41 pages, 5 figure
    • …
    corecore