9,194 research outputs found

    High energy DVCS on a photon and related meson exclusive production

    Full text link
    In this work we estimate the differential cross section for the high energy deeply virtual Compton scattering on a photon target within the QCD dipole-dipole scattering formalism. For the phenomenology, a saturation model for the dipole-dipole cross section for two photon scattering is considered. Its robustness is supported by good description of current accelerator data. In addition, we consider the related exclusive vector meson production processes. This analysis is focused on the light ρ\rho and ϕ\phi meson production, which produce larger cross sections. The phenomenological results are compared with the theoretical calculation using the CD BFKL approach.Comment: 6 pages, 5 figures. Version to be published in Physical Review

    Charm and bottom production in inclusive double Pomeron exchange in heavy ion collisions at the LHC

    Full text link
    The inclusive double Pomeron exchange cross section for heavy quark pair production is calculated for nucleus-nucleus collisions at the LHC. The present estimate is based on hard diffractive factorization, corrected by absorptive corrections and nuclear effects. The theoretical uncertainties for nuclear collisions are investigated and a comparison to other approaches is presented. The production channels producing a similar final state configuration are discussed as well.Comment: 7 pages, 3 tables. Final version to be published in Physical Review

    Diffractive photoproduction of heavy quarks in hadronic collisions

    Full text link
    In this letter we study the diffractive photoproduction of heavy quarks in hadronic (pp/pA/AA) interactions for Tevatron and LHC energies. The integrated cross section and rapidity distribution for the process h_1 h_2 --> h_1 h_2 QQBAR (h_i = p,A and Q = c,b) are estimated using the Color Glass Condensate (CGC) formalism. Our results indicate that this production channel has larger cross sections than the competing reactions of double diffractive production and coherent AA reactions initiated by two-photon collisions.Comment: 4 pages, 2 figures, 1 table. Version to be published in Physical Review

    Ultrahigh energy neutrinos and non-linear QCD dynamics

    Full text link
    The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the non-linear QCD dynamic s. Based on the color dipole framework, the results for the saturation model supplemented by DGLAP evolution as well as for the BFKL formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using NLO DGLAP and unified BFKL-DGLAP formalisms.Comment: 5 pages, 2 figures. Version to be published in Physical Review

    Imaging stress and magnetism at high pressures using a nanoscale quantum sensor

    Get PDF
    Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For the former, we quantify all six (normal and shear) stress components with accuracy <0.01<0.01 GPa, offering unique new capabilities for characterizing the strength and effective viscosity of solids and fluids under pressure. For the latter, we demonstrate vector magnetic field imaging with dipole accuracy <1011<10^{-11} emu, enabling us to measure the pressure-driven αϵ\alpha\leftrightarrow\epsilon phase transition in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1 noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions even in the absence of static magnetic signatures. By integrating an atomic-scale sensor directly into DACs, our platform enables the in situ imaging of elastic, electric and magnetic phenomena at high pressures.Comment: 18 + 50 pages, 4 + 19 figure

    Influence of biological activity on 65Zn and 109Cd removal from tidal water by chronically-polluted mangrove sediments

    Get PDF
    The biological activity influence on the mangrove sediment capacity to remove 65Zn and 109Cd from tidal water was evaluated in a site chronically polluted. Benthic Activity Indexes (BAI), corresponding to relative estimates of biological impact on radiotracer accumulation, were higher for 109Cd (~ 38%) than for 65Zn (~ 10%) in the top centimetre of sediment. However, BAI exceeded 96% for deeper sediment layers. This apparent decrease in radiotracer diffusion into deep sediments through biological activity inhibition is stronger than reported for much less polluted mangrove nearby, suggesting that benthic organisms tolerant of chronic metal pollution may affect metal sorption mechanisms.info:eu-repo/semantics/publishedVersio
    corecore