36 research outputs found

    Interactions Between the Amazonian Rainforest and Cumuli Clouds: A Large‐Eddy Simulation, High‐Resolution ECMWF, and Observational Intercomparison Study

    Get PDF
    The explicit coupling at meter and second scales of vegetation's responses to the atmospheric‐boundary layer dynamics drives a dynamic heterogeneity that influences canopy‐top fluxes and cloud formation. Focusing on a representative day during the Amazonian dry season, we investigate the diurnal cycle of energy, moisture and carbon dioxide at the canopy top, and the transition from clear to cloudy conditions. To this end, we compare results from a large‐eddy simulation technique, a high‐resolution global weather model, and a complete observational data set collected during the GoAmazon14/15 campaign. The overall model‐observation comparisons of radiation and canopy‐top fluxes, turbulence, and cloud dynamics are very satisfactory, with all the modeled variables lying within the standard deviation of the monthly aggregated observations. Our analysis indicates that the timing of the change in the daylight carbon exchange, from a sink to a source, remains uncertain and is probably related to the stomata closure caused by the increase in vapor pressure deficit during the afternoon. We demonstrate quantitatively that heat and moisture transport from the subcloud layer into the cloud layer are misrepresented by the global model, yielding low values of specific humidity and thermal instability above the cloud base. Finally, the numerical simulations and observational data are adequate settings for benchmarking more comprehensive studies of plant responses, microphysics, and radiation

    Observing convective aggregation

    Get PDF
    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad a distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network

    Surviving sepsis campaign: research priorities for sepsis and septic shock

    No full text
    © 2018, 2018 SCCM and ESICM. Objective: To identify research priorities in the management, epidemiology, outcome and underlying causes of sepsis and septic shock. Design: A consensus committee of 16 international experts representing the European Society of Intensive Care Medicine and Society of Critical Care Medicine was convened at the annual meetings of both societies. Subgroups had teleconference and electronic-based discussion. The entire committee iteratively developed the entire document and recommendations. Methods: Each committee member independently gave their top five priorities for sepsis research. A total of 88 suggestions (ESM 1 - supplemental table 1) were grouped into categories by the committee co-chairs, leading to the formation of seven subgroups: infection, fluids and vasoactive agents, adjunctive therapy, administration/epidemiology, scoring/identification, post-intensive care unit, and basic/translational science. Each subgroup had teleconferences to go over each priority followed by formal voting within each subgroup. The entire committee also voted on top priorities across all subgroups except for basic/translational science. Results: The Surviving Sepsis Research Committee provides 26 priorities for sepsis and septic shock. Of these, the top six clinical priorities were identified and include the following questions: (1) can targeted/personalized/precision medicine approaches determine which therapies will work for which patients at which times?; (2) what are ideal endpoints for volume resuscitation and how should volume resuscitation be titrated?; (3) should rapid diagnostic tests be implemented in clinical practice?; (4) should empiric antibiotic combination therapy be used in sepsis or septic shock?; (5) what are the predictors of sepsis long-term morbidity and mortality?; and (6) what information identifies organ dysfunction? Conclusions: While the Surviving Sepsis Campaign guidelines give multiple recommendations on the treatment of sepsis, significant knowledge gaps remain, both in bedside issues directly applicable to clinicians, as well as understanding the fundamental mechanisms underlying the development and progression of sepsis. The priorities identified represent a roadmap for research in sepsis and septic shock

    The surviving sepsis campaign: fluid resuscitation and vasopressor therapy research priorities in adult patients

    No full text
    Objective: To expand upon the priorities of fluid resuscitation and vasopressor therapy research priorities identified by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data Sources: Original paper and literature search. Study Selection: Several members of the original task force with expertise specific to the area of fluid resuscitation and vasopressor therapy. Data Extraction: None. Data Synthesis: None. Conclusion: In the second of a series of manuscripts subsequent to the original paper, members with expertise in the subjects expound upon the three identified priorities related to fluid resuscitation and vasopressor therapies. This analysis summarizes what is known and what were identified as ongoing and future research.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore