35 research outputs found

    Metformin ameliorates valve interstitial cell calcification by promoting autophagic flux.

    Get PDF
    Calcific aortic valve disease (CAVD) is the most common heart disease of the developed world. It has previously been established that metformin administration reduces arterial calcification via autophagy; however, whether metformin directly regulates CAVD has yet to be elucidated. In the present study we investigated whether metformin alleviates valvular calcification through the autophagy-mediated recycling of Runx2.Calcification was reduced in rat valve interstitial cells (RVICs) by metformin treatment (0.5mM - 1.5mM) (P&lt;0.01), with a marked decrease in Runx2 protein expression compared to control cells (P&lt;0.05). Additionally, upregulated expression of Atg3 and Atg7 (key proteins required for autophagosome formation), was observed following metformin treatment (1mM). Blocking autophagic flux using Bafilomycin-A1 revealed colocalisation of Runx2 with LC3 puncta in metformin treated RVICs (P&lt;0.001). Comparable Runx2 accumulation was seen in LC3 positive autolysosomes present within cells that had been treated with both metformin and hydroxychloroquine in combination (P&lt;0.001). Mechanistic studies employing three-way co-immunoprecipitation with Runx2, p62 and LC3 suggested that Runx2 binds to LC3-II upon metformin treatment in VICs.Together these studies suggest that the utilisation of metformin may represent a novel strategy for the treatment of CAVD.<br/

    Mechanisms and Clinical Consequences of Vascular Calcification

    Get PDF
    Vascular calcification has severe clinical consequences and is considered an accurate predictor of future adverse cardiovascular events, including myocardial infarction and stroke. Previously vascular calcification was thought to be a passive process which involved the deposition of calcium and phosphate in arteries and cardiac valves. However, recent studies have shown that vascular calcification is a highly regulated, cell-mediated process similar to bone formation. In this article, we outline the current understanding of key mechanisms governing vascular calcification and highlight the clinical consequences. By understanding better the molecular pathways and genetic circuitry responsible for the pathological mineralization process novel drug targets may be identified and exploited to combat and reduce the detrimental effects of vascular calcification on human health

    Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts

    Get PDF
    © 2019 Published by Elsevier Inc.Arterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, inthe medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associatedwith the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. Thisstudy used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely usedin vitromodels of AMC and bone formation. Significant differences were identified between osteoblasts andcalcifying VSMCs. First, osteoblasts formed large mineralised bone nodules that were associated with widespreaddeposition of an extracellular collagenous matrix. In contrast, VSMCs formed small discrete regions of calcifi-cation that were not associated with collagen deposition and did not resemble bone. Second, calcifying VSMCsdisplayed a progressive reduction in cell viability over time (≤7-fold), with a 50% increase in apoptosis,whereas osteoblast and control VSMCs viability remained unchanged. Third, osteoblasts expressed high levels ofalkaline phosphatase (TNAP) activity and TNAP inhibition reduced bone formation by to 90%. TNAP activity incalcifying VSMCs was∼100-fold lower than that of bone-forming osteoblasts and cultures treated withβ-gly-cerophosphate, a TNAP substrate, did not calcify. Furthermore, TNAP inhibition had no effect on VSMC calci-fication. Although, VSMC calcification was associated with increased mRNA expression of osteoblast-relatedgenes (e.g. Runx2, osterix, osteocalcin, osteopontin), the relative expression of these genes was up to 40-foldlower in calcifying VSMCs versus bone-forming osteoblasts. In summary, calcifying VSMCsin vitrodisplay somelimited osteoblast-like characteristics but also differ in several key respects: 1) their inability to form collagen-containing bone; 2) their lack of reliance on TNAP to promote mineral deposition; and, 3) the deleterious effectof calcification on their viability.Peer reviewedFinal Published versio

    Deficiency of the bone mineralization inhibitor NPP1 protects against obesity and diabetes

    Get PDF
    The emergence of bone as an endocrine regulator has prompted a re-evaluation of the role of bone mineralization factors in the development of metabolic disease. Ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) controls bone mineralization through the generation of pyrophosphate, and levels of NPP1 are elevated both in dermal fibroblast cultures and muscle of individuals with insulin resistance. We investigated the metabolic phenotype associated with impaired bone metabolism in mice lacking the gene that encodes NPP1 (Enpp1−/− mice). Enpp1−/− mice exhibited mildly improved glucose homeostasis on a normal diet but showed a pronounced resistance to obesity and insulin resistance in response to chronic high-fat feeding. Enpp1−/− mice had increased levels of the insulin-sensitizing bone-derived hormone osteocalcin but unchanged insulin signalling within osteoblasts. A fuller understanding of the pathways of NPP1 could inform the development of novel therapeutic strategies for treating insulin resistance

    Culture of Murine Embryonic Metatarsals: A Physiological Model of Endochondral Ossification

    Get PDF
    The fundamental process of endochondral ossification is under tight regulation in the healthy individual so as to prevent disturbed development and/or longitudinal bone growth. As such, it is imperative that we further our understanding of the underpinning molecular mechanisms involved in such disorders so as to provide advances towards human and animal patient benefit. The mouse metatarsal organ explant culture is a highly physiological ex vivo model for studying endochondral ossification and bone growth as the growth rate of the bones in culture mimic that observed in vivo. Uniquely, the metatarsal organ culture allows the examination of chondrocytes in different phases of chondrogenesis and maintains cell-cell and cell-matrix interactions, therefore providing conditions closer to the in vivo situation than cells in monolayer or 3D culture. This protocol describes in detail the intricate dissection of embryonic metatarsals from the hind limb of E15 murine embryos and the subsequent analyses that can be performed in order to examine endochondral ossification and longitudinal bone growth

    Comparative Transcriptomic Profiling and Gene Expression for Myxomatous Mitral Valve Disease in the Dog and Human

    Get PDF
    Myxomatous mitral valve disease is the single most important mitral valve disease in both dogs and humans. In the case of the dog it is ubiquitous, such that all aged dogs will have some evidence of the disease, and for humans it is known as Barlow’s disease and affects up to 3% of the population, with an expected increase in prevalence as the population ages. Disease in the two species show many similarities and while both have the classic myxomatous degeneration only in humans is there extensive fibrosis. This dual pathology of the human disease markedly affects the valve transcriptome and the difference between the dog and human is dominated by changes in genes associated with fibrosis. This review will briefly examine the comparative valve pathology and then, in more detail, the transcriptomic profiling and gene expression reported so far for both species

    A protective role for FGF-23 in local defence against disrupted arterial wall integrity?

    Get PDF
    Increasing interest is focusing on the role of the FGF-23/Klotho axis in mediating vascular calcification. However, the underpinning mechanisms have yet to be fully elucidated. Murine VSMCs were cultured in calcifying medium for a 21d period. FGF-23 mRNA expression was significantly up-regulated by 7d (1.63 fold; P<0.001), with a concomitant increase in protein expression. mRNA and protein expression of both FGFR1 and Klotho were confirmed. Increased FGF-23 and Klotho protein expression was also observed in the calcified media of Enpp1(−/−) mouse aortic tissue. Reduced calcium deposition was observed in calcifying VSMCs cultured with recombinant FGF-23 (10ng/ml; 28.1% decrease; P<0.01). Calcifying VSMCs treated with PD173074, an inhibitor of FGFR1 and FGFR3, showed significantly increased calcification (50nM; 87.8% increase; P<0.001). FGF-23 exposure induced phosphorylation of ERK1/2. Treatment with FGF-23 in combination with PD98059, an ERK1/2 inhibitor, significantly increased VSMC calcification (10μM; 41.3% increase; P<0.01). Use of FGF-23 may represent a novel therapeutic strategy for inhibiting vascular calcification
    corecore