24 research outputs found

    Leptin: A Metabolic Signal for the Differentiation of Pituitary Cells

    Get PDF
    Pituitary cell function is impacted by metabolic states and therefore must receive signals that inform them about nutritional status or adiposity. A primary signal from adipocytes is leptin, which recent studies have shown regulates most pituitary cell types. Subsets of all pituitary cell types express leptin receptors and leptin has been shown to exert transcriptional control through classical JAK/STAT pathways. Recent studies show that leptin also signals through post-transcriptional pathways that involve the translational regulatory protein Musashi. Mechanistically, post-transcriptional control would permit rapid cellular regulation of critical pre-existing pituitary transcripts as energy states change. The chapter will review evidence for transcriptional and/or post-transcriptional regulation of leptin targets (including Gnrhr, activin, Fshb, Gh, Ghrhr, and Pou11f1) and the consequences of the loss of leptin signaling to gonadotrope and somatotrope functions

    Mutant profilin1 transgenic mice recapitulate cardinal features of motor neuron disease

    Get PDF
    The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeletonregulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Functional Integration of mRNA Translational Control Programs

    No full text
    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease

    Post-Transcriptional Regulation of Gnrhr: A Checkpoint for Metabolic Control of Female Reproduction

    No full text
    The proper expression of gonadotropin-releasing hormone receptors (GnRHRs) by pituitary gonadotropes is critical for maintaining maximum reproductive capacity. GnRH receptor expression must be tightly regulated in order to maintain the normal pattern of expression through the estrous cycle in rodents, which is believed to be important for interpreting the finely tuned pulses of GnRH from the hypothalamus. Much work has shown that Gnrhr expression is heavily regulated at the level of transcription. However, researchers have also discovered that Gnrhr is regulated post-transcriptionally. This review will discuss how RNA-binding proteins and microRNAs may play critical roles in the regulation of GnRHR expression. We will also discuss how these post-transcriptional regulators may themselves be affected by metabolic cues, specifically with regards to the adipokine leptin. All together, we present evidence that Gnrhr is regulated post-transcriptionally, and that this concept must be further explored in order to fully understand the complex nature of this receptor

    A novel regulatory element determines the timing of Mos mRNA translation during Xenopus oocyte maturation

    No full text
    Progression through vertebrate oocyte maturation requires that pre-existing, maternally derived mRNAs be translated in a strict temporal order. The mechanism that controls the timing of oocyte mRNA translation is unknown. In this study we show that the early translational induction of the mRNA encoding the Mos proto-oncogene is mediated through a novel regulatory element within the 3′ untranslated region of the Mos mRNA. This novel element is responsive to the MAP kinase signaling pathway and is distinct from the late acting, cdc2-responsive, cytoplasmic polyadenylation element. Our findings suggest that the timing of maternal mRNA translation is controlled through signal transduction pathways targeting distinct 3′ UTR mRNA elements
    corecore