100 research outputs found

    Science Hybrid Orbiter and Lunar Relay (SCHOLR) Architecture and Design

    Get PDF
    Considered both a stepping-stone to deep space and a key to unlocking the mysteries of planetary formation, the Moon offers a unique opportunity for scientific study. Robotic precursor missions are being developed to improve technology and enable new approaches to exploration. Robots, lunar landers, and satellites play significant roles in advancing science and technologies, offering close range and in-situ observations. Science and exploration data gathered from these nodes and a lunar science satellite is intended to support future human expeditions and facilitate future utilization of lunar resources. To attain a global view of lunar science, the nodes will be distributed over the lunar surface, including locations on the far side of the Moon. Given that nodes on the lunar far side do not have direct line-of-sight for Earth communications, the planned presence of such nodes creates the need for a lunar communications relay satellite. Since the communications relay capability would only be required for a small portion of the satellite s orbit, it may be possible to include communication relay components on a science spacecraft. Furthermore, an integrated satellite has the potential to reduce lunar surface mission costs. A SCience Hybrid Orbiter and Lunar Relay (SCHOLR) is proposed to accomplish scientific goals while also supporting the communications needs of landers on the far side of the Moon. User needs and design drivers for the system were derived from the anticipated needs of future robotic and lander missions. Based on these drivers and user requirements, accommodations for communications payload aboard a science spacecraft were developed. A team of interns identified and compared possible SCHOLR architectures. The final SCHOLR architecture was analyzed in terms of orbiter lifetime, lunar surface coverage, size, mass, power, and communications data rates. This paper presents the driving requirements, operational concept, and architecture views for SCHOLR within a lunar surface nodal network. Orbital and bidirectional link analysis, between lunar nodes, orbiter, and Earth, as well as a conceptual design for the spacecraft are also presente

    Telephone conversation impairs sustained visual attention via a central bottleneck

    Get PDF
    Recent research has shown that holding telephone conversations disrupts one's driving ability. We asked whether this effect could be attributed to a visual attention impairment. In Experiment 1, participants conversed on a telephone or listened to a narrative while engaged in multiple object tracking (MOT), a task requiring sustained visual attention. We found that MOT was disrupted in the telephone conversation condition, relative to single-task MOT performance, but that listening to a narrative had no effect. In Experiment 2, we asked which component of conversation might be interfering with MOT performance. We replicated the conversation and single-task conditions of Experiment 1 and added two conditions in which participants heard a sequence of words over a telephone. In the shadowing condition, participants simply repeated each word in the sequence. In the generation condition, participants were asked to generate a new word based on each word in the sequence. Word generation interfered with MOT performance, but shadowing did not. The data indicate that telephone conversation disrupts attention at a central stage, the act of generating verbal stimuli, rather than at a peripheral stage, such as listening or speaking

    Disparities in Healthcare Utilisation Rates for Aboriginal and Non-Aboriginal Albertan Residents, 1997-2006: A Population Database Study

    Get PDF
    Background: It is widely recognised that significant discrepancies exist between the health of indigenous and nonindigenous populations. Whilst the reasons are incompletely defined, one potential cause is that indigenous communities do not access healthcare to the same extent. We investigated healthcare utilisation rates in the Canadian Aboriginal population to elucidate the contribution of this fundamental social determinant for health to such disparities. Methods: Healthcare utilisation data over a nine-year period were analysed for a cohort of nearly two million individuals to determine the rates at which Aboriginal and non-Aboriginal populations utilised two specialties (Cardiology and Ophthalmology) in Alberta, Canada. Unadjusted and adjusted healthcare utilisation rates obtained by mixed linear and Poisson regressions, respectively, were compared amongst three population groups - federally registered Aboriginals, individuals receiving welfare, and other Albertans. Results: Healthcare utilisation rates for Aboriginals were substantially lower than those of non-Aboriginals and welfare recipients at each time point and subspecialty studied [e.g. During 2005/06, unadjusted Cardiology utilisation rates were 0.28% (Aboriginal, n = 97,080), 0.93% (non-Aboriginal, n = 1,720,041) and 1.37% (Welfare, n = 52,514), p = ,0.001]. The age distribution of the Aboriginal population was markedly different [2.7%$65 years of age, non-Aboriginal 10.7%], and comparable utilisation rates were obtained after adjustment for fiscal year and estimated life expectancy [Cardiology: Incidence Rate Ratio 0.66, Ophthalmology: IRR 0.85]. Discussion: The analysis revealed that Aboriginal people utilised subspecialty healthcare at a consistently lower rate than either comparatively economically disadvantaged groups or the general population. Notably, the differences were relatively invariant between the major provincial centres and over a nine year period. Addressing the causes of these discrepancies is essential for reducing marked health disparities, and so improving the health of Aboriginal people

    Acute Sleep Deprivation and Circadian Misalignment Associated with Transition onto the First Night of Work Impairs Visual Selective Attention

    Get PDF
    Background: Overnight operations pose a challenge because our circadian biology promotes sleepiness and dissipates wakefulness at night. Since the circadian effect on cognitive functions magnifies with increasing sleep pressure, cognitive deficits associated with night work are likely to be most acute with extended wakefulness, such as during the transition from a day shift to night shift. Methodology/Principal Findings: To test this hypothesis we measured selective attention (with visual search), vigilance (with Psychomotor Vigilance Task [PVT]) and alertness (with a visual analog scale) in a shift work simulation protocol, which included four day shifts followed by three night shifts. There was a nocturnal decline in cognitive processes, some of which were most pronounced on the first night shift. The nighttime decrease in visual search sensitivity was most pronounced on the first night compared with subsequent nights (p = .04), and this was accompanied by a trend towards selective attention becoming ‘fast and sloppy’. The nighttime increase in attentional lapses on the PVT was significantly greater on the first night compared to subsequent nights (p<.05) indicating an impaired ability to sustain focus. The nighttime decrease in subjective alertness was also greatest on the first night compared with subsequent nights (p<.05). Conclusions/Significance: These nocturnal deficits in attention and alertness offer some insight into why occupational errors, accidents, and injuries are pronounced during night work compared to day work. Examination of the nighttime vulnerabilities underlying the deployment of attention can be informative for the design of optimal work schedules and the implementation of effective countermeasures for performance deficits during night work

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Patient Safety in Internal Medicine

    Get PDF
    AbstractHospital Internal Medicine (IM) is the branch of medicine that deals with the diagnosis and non-surgical treatment of diseases, providing the comprehensive care in the office and in the hospital, managing both common and complex illnesses of adolescents, adults, and the elderly. IM is a key ward for Health National Services. In Italy, for example, about 17.3% of acute patients are discharged from the IM departments. After the epidemiological transition to chronic/degenerative diseases, patients admitted to hospital are often poly-pathological and so requiring a global approach as in IM. As such transition was not associated—with rare exceptions—to hospital re-organization of beds and workforce, IM wards are often overcrowded, burdened by off-wards patients and subjected to high turnover and discharge pressure. All these factors contribute to amplify some traditional clinical risks for patients and health operators. The aim of our review is to describe several potential errors and their prevention strategies, which should be implemented by physicians, nurses, and other healthcare professionals working in IM wards

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore