56 research outputs found

    A Comparison of Approaches to Estimate the Inbreeding Coefficient and Pairwise Relatedness Using Genomic and Pedigree Data in a Sheep Population

    Get PDF
    Genome-wide SNP data provide a powerful tool to estimate pairwise relatedness among individuals and individual inbreeding coefficient. The aim of this study was to compare methods for estimating the two parameters in a Finnsheep population based on genome-wide SNPs and genealogies, separately. This study included ninety-nine Finnsheep in Finland that differed in coat colours (white, black, brown, grey, and black/white spotted) and were from a large pedigree comprising 319 119 animals. All the individuals were genotyped with the Illumina Ovine SNP50K BeadChip by the International Sheep Genomics Consortium. We identified three genetic subpopulations that corresponded approximately with the coat colours (grey, white, and black and brown) of the sheep. We detected a significant subdivision among the colour types (FST = 5.4%, P<0.05). We applied robust algorithms for the genomic estimation of individual inbreeding (FSNP) and pairwise relatedness (ΦSNP) as implemented in the programs KING and PLINK, respectively. Estimates of the two parameters from pedigrees (FPED and ΦPED) were computed using the RelaX2 program. Values of the two parameters estimated from genomic and genealogical data were mostly consistent, in particular for the highly inbred animals (e.g. inbreeding coefficient F>0.0625) and pairs of closely related animals (e.g. the full- or half-sibs). Nevertheless, we also detected differences in the two parameters between the approaches, particularly with respect to the grey Finnsheep. This could be due to the smaller sample size and relative incompleteness of the pedigree for them

    Change in genetic size of small-closed populations: Lessons from a domestic mammal population

    Get PDF
    The aim of this study was to monitor changes in genetic size of a small-closed population of Iranian Zandi sheep, by using pedigree information from animals born between 1991 and 2005. The genetic size was assessed by using measures based on the probability of identity-by-descend of genes (coancestry, f, and effective population size, Ne ), as well as measures based on probability of gene origin (effective number of founders, fe , effective number of founder genomes, fg , and effective number of non-founder genomes, fne ). Average coancestry, or the degree of genetic similarity of individuals, increased from 0.81% to 1.44% during the period 1993 to 2005, at the same time that Ne decreased from 263 to 93. The observed trend for fe was irregular throughout the experiment in a way that fe was 68, 87, 77, 92, and 80 in 1993, 1996, 1999, 2002, and 2005, respectively. Simultaneously, fg , the most informative effective number, decreased from 61 to 35. The index of genetic diversity (GD) which was obtained from estimates of fg , decreased about 2% throughout the period studied. In addition, a noticeable reduction was observed in the estimates of fne from 595 in 1993 to 61 in 2005. The higher than 1 ratio of fe to fg indicated the presence of bottlenecks and genetic drift in the development of this population of Zandi sheep. From 1993 to 1999, fne was much higher than fe , thereby indicating that with respect to loss of genetic diversity, the unequal contribution of founders was more important than the random genetic drift in non-founder generations. Subsequently, random genetic drift in non-founder generations was the major reason for fe > fne . The minimization of average coancestry in new reproductive individuals was recommended as a means of preserving the population against a further loss in genetic diversity

    Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This investigation offers insights into system-wide pathological processes induced in response to cigarette smoke exposure by determining its influences at the gene expression level.</p> <p>Methods</p> <p>We obtained genome-wide quantitative transcriptional profiles from 1,240 individuals from the San Antonio Family Heart Study, including 297 current smokers. Using lymphocyte samples, we identified 20,413 transcripts with significantly detectable expression levels, including both known and predicted genes. Correlation between smoking and gene expression levels was determined using a regression model that allows for residual genetic effects.</p> <p>Results</p> <p>With a conservative false-discovery rate of 5% we identified 323 unique genes (342 transcripts) whose expression levels were significantly correlated with smoking behavior. These genes showed significant over-representation within a range of functional categories that correspond well with known smoking-related pathologies, including immune response, cell death, cancer, natural killer cell signaling and xenobiotic metabolism.</p> <p>Conclusions</p> <p>Our results indicate that not only individual genes but entire networks of gene interaction are influenced by cigarette smoking. This is the largest <it>in vivo </it>transcriptomic epidemiological study of smoking to date and reveals the significant and comprehensive influence of cigarette smoke, as an environmental variable, on the expression of genes. The central importance of this manuscript is to provide a summary of the relationships between gene expression and smoking in this exceptionally large cross-sectional data set.</p

    The Role of Inbreeding in the Extinction of a European Royal Dynasty

    Get PDF
    The kings of the Spanish Habsburg dynasty (1516–1700) frequently married close relatives in such a way that uncle-niece, first cousins and other consanguineous unions were prevalent in that dynasty. In the historical literature, it has been suggested that inbreeding was a major cause responsible for the extinction of the dynasty when the king Charles II, physically and mentally disabled, died in 1700 and no children were born from his two marriages, but this hypothesis has not been examined from a genetic perspective. In this article, this hypothesis is checked by computing the inbreeding coefficient (F) of the Spanish Habsburg kings from an extended pedigree up to 16 generations in depth and involving more than 3,000 individuals. The inbreeding coefficient of the Spanish Habsburg kings increased strongly along generations from 0.025 for king Philip I, the founder of the dynasty, to 0.254 for Charles II and several members of the dynasty had inbreeding coefficients higher than 0.20. In addition to inbreeding due to unions between close relatives, ancestral inbreeding from multiple remote ancestors makes a substantial contribution to the inbreeding coefficient of most kings. A statistically significant inbreeding depression for survival to 10 years is detected in the progenies of the Spanish Habsburg kings. The results indicate that inbreeding at the level of first cousin (F = 0.0625) exerted an adverse effect on survival of 17.8%±12.3. It is speculated that the simultaneous occurrence in Charles II (F = 0.254) of two different genetic disorders: combined pituitary hormone deficiency and distal renal tubular acidosis, determined by recessive alleles at two unlinked loci, could explain most of the complex clinical profile of this king, including his impotence/infertility which in last instance led to the extinction of the dynasty

    QTL linkage analysis of connected populations using ancestral marker and pedigree information

    Get PDF
    The common assumption in quantitative trait locus (QTL) linkage mapping studies that parents of multiple connected populations are unrelated is unrealistic for many plant breeding programs. We remove this assumption and propose a Bayesian approach that clusters the alleles of the parents of the current mapping populations from locus-specific identity by descent (IBD) matrices that capture ancestral marker and pedigree information. Moreover, we demonstrate how the parental IBD data can be incorporated into a QTL linkage analysis framework by using two approaches: a Threshold IBD model (TIBD) and a Latent Ancestral Allele Model (LAAM). The TIBD and LAAM models are empirically tested via numerical simulation based on the structure of a commercial maize breeding program. The simulations included a pilot dataset with closely linked QTL on a single linkage group and 100 replicated datasets with five linkage groups harboring four unlinked QTL. The simulation results show that including parental IBD data (similarly for TIBD and LAAM) significantly improves the power and particularly accuracy of QTL mapping, e.g., position, effect size and individuals’ genotype probability without significantly increasing computational demand

    Haplotype association analyses in resources of mixed structure using Monte Carlo testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomewide association studies have resulted in a great many genomic regions that are likely to harbor disease genes. Thorough interrogation of these specific regions is the logical next step, including regional haplotype studies to identify risk haplotypes upon which the underlying critical variants lie. Pedigrees ascertained for disease can be powerful for genetic analysis due to the cases being enriched for genetic disease. Here we present a Monte Carlo based method to perform haplotype association analysis. Our method, hapMC, allows for the analysis of full-length and sub-haplotypes, including imputation of missing data, in resources of nuclear families, general pedigrees, case-control data or mixtures thereof. Both traditional association statistics and transmission/disequilibrium statistics can be performed. The method includes a phasing algorithm that can be used in large pedigrees and optional use of pseudocontrols.</p> <p>Results</p> <p>Our new phasing algorithm substantially outperformed the standard expectation-maximization algorithm that is ignorant of pedigree structure, and hence is preferable for resources that include pedigree structure. Through simulation we show that our Monte Carlo procedure maintains the correct type 1 error rates for all resource types. Power comparisons suggest that transmission-disequilibrium statistics are superior for performing association in resources of only nuclear families. For mixed structure resources, however, the newly implemented pseudocontrol approach appears to be the best choice. Results also indicated the value of large high-risk pedigrees for association analysis, which, in the simulations considered, were comparable in power to case-control resources of the same sample size.</p> <p>Conclusions</p> <p>We propose hapMC as a valuable new tool to perform haplotype association analyses, particularly for resources of mixed structure. The availability of meta-association and haplotype-mining modules in our suite of Monte Carlo haplotype procedures adds further value to the approach.</p

    Genetic variability in the Skyros pony and its relationship with other Greek and foreign horse breeds

    Get PDF
    In Greece, seven native horse breeds have been identified so far. Among these, the Skyros pony is outstanding through having a distinct phenotype. In the present study, the aim was to assess genetic diversity in this breed, by using different types of genetic loci and available genealogical information. Its relationships with the other Greek, as well as foreign, domestic breeds were also investigated. Through microsatellite and pedigree analysis it appeared that the Skyros presented a similar level of genetic diversity to the other European breeds. Nevertheless, comparisons between DNA-based and pedigree-based results revealed that a loss of genetic diversity had probably already occurred before the beginning of breed registration. Tests indicated the possible existence of a recent bottleneck in two of the three main herds of Skyros pony. Nonetheless, relatively high levels of heterozygosity and Polymorphism Information Content indicated sufficient residual genetic variability, probably useful in planning future strategies for breed conservation. Three other Greek breeds were also analyzed. A comparison of these with domestic breeds elsewhere, revealed the closest relationships to be with the Middle Eastern types, whereas the Skyros itself remained isolated, without any close relationship, whatsoever
    corecore