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Abstract

Background: There is growing interest in the hypertriglyceridemic waist (HTGW) phenotype, defined as high waist
circumference (≥95 cm in males and ≥80 cm in females) combined with high serum triglyceride concentration
(≥2.0 mmol/L in males and ≥1.5 mmol/L in females) as a marker of type 2 diabetes (T2D) and cardiovascular
disease. However, the prevalence of this phenotype in high-risk populations, its association with T2D, and the
genetic or epigenetic influences on HTGW are not well explored. Using data from large, extended families of
Mexican Americans (a high-risk minority population in the USA) we aimed to: (1) estimate the prevalence of this
phenotype, (2) test its association with T2D and related traits, and (3) dissect out the genetic and epigenetic
associations with this phenotype using genome-wide and epigenome-wide studies, respectively.

Results: Data for this study was from 850 Mexican American participants (representing 39 families) recruited under
the ongoing San Antonio Family Heart Study, 26 % of these individuals had HTGW. This phenotype was
significantly heritable (h2r = 0.52, p = 1.1 × 10−5) and independently associated with T2D as well as fasting glucose
levels and insulin resistance. We conducted genome-wide association analyses using 759,809 single nucleotide
polymorphisms (SNPs) and epigenome-wide association analyses using 457,331 CpG sites. There was no evidence
of any SNP associated with HTGW at the genome-wide level but two CpG sites (cg00574958 and cg17058475) in
CPT1A and one CpG site (cg06500161) in ABCG1 were significantly associated with HTGW and remained significant
after adjusting for the closely related components of metabolic syndrome. CPT1A holds a cardinal position in the
metabolism of long-chain fatty acids while ABCG1 plays a role in triglyceride metabolism.

Conclusions: Our results reemphasize the value of HTGW as a marker of T2D. This phenotype shows association
with DNA methylation within CPT1A and ABCG1, genes involved in fatty acid and triglyceride metabolism. Our
results underscore the importance of epigenetics in a clinically informative phenotype.

Background
As the global epidemic of type 2 diabetes (T2D) continues
to expand, better, accurate, and cost-efficient ways to strat-
ify risk of individuals are urgently required. In that vein, it
is now fairly well established that hypertriglyceridemic

waist (HTGW) is a promising and simple measurement
that is clinically feasible, yet accurate for risk stratification
of T2D [1–3]. HTGW is a critical link between obesity
(specifically, central obesity) and T2D. The rationale for
using a combination of waist circumference and fasting
triglyceride levels is to partially overcome the inability of
waist circumference to discriminate between subcutane-
ous and visceral adiposity; raised serum triglycerides in
the presence of increased waist circumference are more
likely to indicate visceral rather than subcutaneous fat ac-
cumulation [4]. The last few years have seen a dramatic
increase in studies around the world that have reported
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the use and importance of HTGW in prediction of T2D
and cardiovascular risk [5–12].
Considering the strong genetic basis of T2D, waist cir-

cumference, and serum triglyceride levels, it is likely that
there is also a strong genetic contribution to HTGW.
Several studies have shown the possible involvement of
HNF1A variants, epistatic interactions with genes in-
volved in the very low density lipoprotein pathway and
variation within ADIPOQ to be associated with HTGW
[13–16]. Generally, however, replicative literature sup-
port for these observations from large, population based
studies has been lacking. Moreover, given the possibility
of a significant environmental influence (e.g., through
diet and physical activity) on both waist circumference
and triglyceride levels [11, 17, 18], it is conceivable that
the HTGW phenotype may be epigenetically modifiable.
Although recent elegant studies have shown promising
results for the association of DNA methylation separ-
ately with waist circumference [19–21] and triglyceride
levels [22–24], to our knowledge, currently, there are no
studies on the possible epigenetic role in the inter-
individual variability in HTGW.
In this study, we investigated both the genetic and epi-

genetic basis of HTGW in Mexican Americans, a minority
population in the USA who are at high risk for both obes-
ity and T2D [25–27]. To enhance our power to detect
genetic and epigenetic effects, we conducted this study in
pedigreed individuals representing large, extended fam-
ilies, recruited in the San Antonio Family Heart Study [28,
29]. Using genome- and epigenome-wide approaches, we
show here an association between HTGW and T2D in
Mexican Americans and identify three CpG sites in
CPT1A and ABCG1 that are significantly and independ-
ently associated with the HTGW phenotype.

Results
Study participants
We studied 850 pedigreed Mexican Americans (repre-
senting 39 extended families), who were predominantly
middle aged (mean age 46.75 years, standard deviation
14.54 years) and 63 % female. At the time of assessment
21 % of individuals had T2D (fasting glucose ≥7 mmol/L),
another 17 % had impaired fasting glucose (fasting serum
glucose between 5.55 mmol/L and 7 mmol/L), 56 % were
obese (body mass index ≥30 kg/m2), and 32 % had hyper-
tension (systolic blood pressure >140 mmHg and/or dia-
stolic blood pressure >90 mmHg, or already receiving
antihypertensive treatment). A total of 14, 16, and 24 % of
participants were receiving lipid-lowering, anti-diabetic
and anti-hypertension medications, respectively. The
prevalence of central obesity (waist circumference ≥90 cm
for males or ≥85 cm for females) was very high (88 %) in
our sample but the prevalence of hypertriglyceridemia
(≥2.0 mmol/L for males and ≥1.5 mmol/L in females) was

comparatively lower (28 %). There were a total of 223
(26 %) participants with HTGW, with a higher preva-
lence in females (31 %) compared to males (18 %).
To ensure that the potential association of genetic
and epigenetic variants with HTGW is not con-
founded by the presence of comorbidities, we used
robust statistical models that accounted for the simul-
taneous presence of comorbidities (systolic and dia-
stolic blood pressure and presence of diabetes and
obesity) in our analyses.
There was a significant phenotypic correlation be-

tween waist circumference and triglycerides in the
study participants (ρP = 0.19, p = 6.8 × 10−7). However,
results obtained using bivariate trait analyses showed
that this phenotypic correlation was primarily because
of shared environmental influences (ρE = 0.32, p =
0.0011) rather than due to shared genetic influences
(ρG = 0.07, p = 0.5898). We therefore conducted an in-
vestigation into the potential genetic and epigenetic
basis of HTGW.

Association of HTGW with T2D
We first tested the hypothesis that HTGW is an inde-
pendent determinant of T2D in our sample of Mexican
American families. For this, we tested the association of
HTGW with four T2D-related phenotypic traits (T2D,
fasting blood glucose (FBG), fasting plasma insulin (FPI),
and homeostatic model of assessment-insulin resistance
(HOMA-IR)). After adjusting for clinically relevant con-
founders, we found that HTGW was significantly and in-
dependently associated with all four traits related to T2D
(Table 1). The polygenic regression coefficients, when
transformed to odds ratios, indicate that study participants
with HTGW have 3.16 times higher odds (as compared to
those without HTGW) of T2D (95 % CI 2.00–4.93).
We next evaluated whether the presence of both

high waist circumference and hypertriglyceridemia is
more strongly associated with T2D-related traits than
either of these factors alone. For this, we used inter-
active polygenic regression models, the results of
which are shown in Table 1. For all four traits stud-
ied, the regression coefficients for the combination of
high waist and hypertriglyceridemia were statistically
significantly associated with the trait in question.
With the exception of T2D, the regression coefficients
for the combination of high waist circumference and
hypertriglyceridemia were substantially larger as com-
pared to those for high waist circumference or
hypertriglyceridemia alone. These results indicate that
in the context of T2D-related phenotypes, HTGW is
likely to be strongly associated with the underlying
pathology of T2D and may therefore be an important
T2D risk assessment tool.
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Heritability of HTGW
We next estimated the heritability of HTGW using poly-
genic regression that accounted for familial relationships.
Even after accounting for age and sex (and their first
and second order interactions), use of lipid lowering
drugs, use of anti-hypertensive medications, systolic
blood pressure, diastolic blood pressure, and presence of
diabetes and obesity, we found that the heritability of
HTGW was 0.52 (SE 0.12, p = 1.1 × 10−5).

Genome-wide association analysis of HTGW
Results of the association between each of the 728,175
single nucleotide polymorphisms (SNPs) and liability of
HTGW are shown in Fig. 1a, with details provided in
Additional file 1: Table S1. The Q-Q plot for these ana-
lyses is shown in Additional file 2: Figure S1. There was
no evidence of a systematic inflation of significance
values (genomic inflation factor = 1.0251). After correct-
ing for clinically relevant confounders as well as the top
four principal components that reflected underlying
population admixture, we did not find any statistically
significant associations between genetic variants and li-
ability of HTGW after correcting for multiple compari-
sons by controlling for a false discovery rate (FDR) of
5 %. We observed that even though clusters of SNP-
HTGW association were visible on chromosomes 2

(intergenic), 4 (flanking the 3’ untranslated region of the
LOC391698 locus), 13 (flanking the 5’ untranslated re-
gion of RFC3), and 20 (flanking the 3’ untranslated re-
gion of the LOC441940 locus), none of these
associations reached genome-wide significance.

Epigenome-wide analysis of HTGW
Of the 485,577 interrogated loci on the array, association
analyses using polygenic regression models could be run
without convergence failure on a total of 458,716
(94.5 %) autosomal CpG sites. Of these, 1385 (0.30 %)
probes had detection p values >0.01 in >5 % of the study
participants. We therefore excluded these probes from
further analyses. Thus, our study included analysis on a
total of 457,331 CpG sites. Full results of the association
analyses between DNA methylation at each CpG site
and liability of HTGW are shown graphically in Fig. 1b
and provided in detail in Additional file 3: Table S2. The
genomic inflation factor for these analyses was 0.6152
indicating a lack of genomic inflation of significance
values (Q-Q plot for these analyses is shown in Add-
itional file 2: Figure S2). After correcting for the clinical
confounders as well as for multiple testing (FDR < 0.05),
we found three CpG sites (cg00574958, cg17058475, and
cg06500161, Fig. 1b and Table 2) to be significantly asso-
ciated with HTGW. The top two sites were in the 5’

Table 1 Independent association of HTGW with T2D-related traits in San Antonio Family Heart Study participants

Traita

T2D FBG FPI HOMA-IR

Model specification

Type of trait Discrete Continuous Continuous Continuous

Transformation Liability Inverse normalization Inverse normalization Inverse normalization

Covariate setb A B B B

Association with HTGW

b (95 % CI) 0.65 (0.39–0.90) 0.30 (0.17–0.43) 0.16 (0.02–0.29) 0.26 (0.13–0.38)

P 3.7 × 10−7 1.2 × 10−5 0.0236 9.8 × 10−5

Association of HTGW and its components estimated through an interactive model

High TG and WC

b (95 % CI) 0.87 (0.31–1.43) 0.45 (0.22–0.68) 0.32 (0.08–0.56) 0.45 (0.22–0.67)

P 0.0021 0.0001 0.0079 8.0 × 10−5

High WC only

b (95 % CI) 0.25 (0.13-0.37) 0.16 (0.04-0.29) 0.17 (−0.18-0.52) 0.20 (0.00-0.39)

P 5.9 × 10−5 0.0081 0.3472 0.0399

High TG only

b (95 % CI) 0.22 (−1.66–2.09) 0.24 (−1.79–2.28) 0.28 (−0.86–1.43) 0.37 (−0.62–1.37)

P 0.8194 0.8160 0.6284 0.4612

HTGW hypertriglyceridemic waist, TG Triglycerides, WC Waist circumference, b regression coefficient, p significance value
aT2D type 2 diabetes, FBG fasting blood glucose, FPI fasting plasma insulin, HOMA-IR homeostatic model of assessment—insulin resistance
bCovariate set A, age, age2, sex, age × sex interaction, age2 × sex interaction, body mass index, systolic and diastolic blood pressure, use of anti-lipid and anti-
hypertensive medications; Covariate Set B age, age2, sex, age × sex interaction, age2 × sex interaction, body mass index, systolic and diastolic blood pressure, use
of anti-lipid, anti-hypertensive, and anti-diabetic medications
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UTR of CPT1A while the third site was in ABCG1. It is
also worth mentioning that the CpG site cg19693031 in
the 3’ UTR of TXNIP was only marginally non-significant
(FDR-corrected p = 0.0563, Additional file 3: Table S2).
We previously found no evidence for the influence of gen-
etic variation (±50 kb, assessed by SNP microarrays) on
any of the CpG sites whose methylation levels were asso-
ciated with HTGW [30]. Similarly, we had previously used
whole-genome sequencing of a subset of our cohort (n =
197) to test for associations between probe-based SNPs
and DNA methylation levels [30]. In this cohort subset,
the mutant allele for rs78442314 within the CPT1A probe
for cg00574958 was not present, and while the mutant al-
lele for rs9982016 within the ABCG1 probe for
cg06500161 was present in 2.79 % of the cohort subset, it
was not significantly associated with DNA methylation
levels detected by the probe (p = 0.1895). Together, this

suggests that the significant associations seen between
DNA methylation levels and HTGW are not driven by
known sequence variation.
Notably, the median β values (Table 2) at both CpG sites

near CPT1A were only slightly smaller in participants with
HTGW as compared to those without HTGW (1.0 % for
cg00574958 and 1.1 % for cg17058475). Conversely, the
median methylation levels were 1.6 % higher in individuals
with HTGW as compared to those without for the CpG
site near the ABCG1. These results indicate that seemingly
small changes in DNA methylation around the CPT1A
and ABCG1 loci are associated with different clinical risk
profiles. To determine whether the observed associations
were driven by a small subset of individuals with extreme
values of β, we studied their distribution in the study par-
ticipants. We observed that there was no marked skew in
the distribution of methylation at any of the three

a

b

Fig. 1 Manhattan plots showing the genome-wide association of DNA sequence variants and epigenome-wide association of DNA methylation
with liability of HTGW. a Genome-wide association study. Genome-wide significance is indicated by the red horizontal line and chromosomal
locations are color-coded. Results are from polygenic regression models that accounted for age, age2, sex, age × sex interaction, and age2 × sex
interaction, the top four principal components quantifying ancestry-based population admixture, and use of anti-lipid, anti-hypertensive and anti-
diabetic medications. b Epigenome-wide association study. Epigenome-wide significance is indicated by the red horizontal line. Significantly
associated CpG sites are labeled and chromosomal locations are color-coded. Results are from polygenic regression models adjusted for age, age2,
sex, age × sex interaction, and age2 × sex interaction, Illumina Sentrix® ID and Sentrix® position (to account for batch effects), estimated cell
counts, and use of anti-lipid, anti-hypertensive and anti-diabetic medications. Q-Q plots corresponding to Panel A and B are shown in Additional
file 2: Figures S1 and S2, respectively
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significantly associated sites (Fig. 2a, c, and e). A compari-
son of the methylation values categorized on the basis of
presence or absence of HTGW also suggested that the

observed associations were unlikely to be a result of
skewed observations (Fig. 2b, d. and f). It was noteworthy
that the DNA methylation levels at all of these sites were

Table 2 Characteristics of the CpG sites significantly associated with HTGW

Characteristic cg00574958 cg17058475 cg06500161

Chromosome 11 11 21

Coordinate 68607622 68607737 43656587

Gene symbol CPT1A CPT1A ABCG1

Gene context 5’UTR 5’UTR Body

Relation with CpG Island North shore North shore South shore

Presence of SNP within probe Yes No Yes

Minor allele frequency of probe SNP in cohort subset 0.0000 - 0.0279

Probe SNP ➔ Methylation association in cohort subset - - Not significant

Cross-reactivity None None None

Heritability 0.21 0.37 0.47

p heritability 2.7 × 10−5 3.5 × 10−10 2.2 × 10−15

Median β

HTGW 0.0831 0.0887 0.5831

No HTGW 0.0929 0.0993 0.5667

Association with HTGWab

b −0.48 −0.44 0.36

p 1.7 × 10−15 8.7 × 10−11 3.7 × 10−10

q 7.9 × 10−10 4.0 × 10−5 1.7 × 10−4

Specificity of association with HTGWb

b −0.46 −0.40 0.32

p 1.3 × 10−12 3.4 × 10−8 1.8 × 10−7

Association with HTGW and its components estimated through an interactive model

High TG and WC

b −0.71 −0.53 0.73

P 2.3 × 10−7 0.0002 5.3 × 10-8

High WC only

b −0.22 −0.25 0.27

P 5.7 × 10−5 0.0815 0.0002

High TG only

b −0.20 0.05 0.47

P 0.7969 0.2690 0.5328

Association with T2D that is mediated through HTGWc

b −0.16 −0.16 0.15

P 0.0223 0.0180 0.0086

b, p, and q indicate regression coefficient, nominal significance value, and significance level corrected for multiple testing (after correction for genomic
inflation), respectively
aAssociation between DNA methylation and HTGW after adjusting for age, age2, sex, age × sex interaction, and age2 × sex interaction, Illumina Sentrix® ID and
Sentrix® position (to account for batch effects), use of anti-lipid, anti-hypertensive and anti-diabetic medications and cellular heterogeneity
bAssociation between DNA methylation and HTGW after adjusting for age, age2, sex, age × sex interaction, and age2 × sex interaction, Illumina Sentrix® ID and
Sentrix® position (to account for batch effects), use of anti-lipid, anti-hypertensive and anti-diabetic medications, cellular heterogeneity, presence of type 2
diabetes, obesity (body mass index ≥ 30 Kg/m2), systolic and diastolic blood pressure
cMediation estimated using Sobel’s parameter [32]. All regression models were adjusted for age, age2, sex, age × sex interaction, and age2 × sex interaction,
Illumina Sentrix® ID and Sentrix® position (to account for batch effects), use of anti-lipid, anti-hypertensive and anti-diabetic medications, and
cellular heterogeneity

Mamtani et al. Clinical Epigenetics  (2016) 8:6 Page 5 of 14



significantly heritable (Table 2; based on data from [30]).
We also observed that none of the three probes were pre-
viously reported to be cross-reactive by Chen et al. [31].
To determine the specificity of association of the three

CpG sites with HTGW, we further adjusted for presence
of type 2 diabetes, obesity, and systolic and diastolic
blood pressures. We found that there was a negligible
loss in the strength of association of the three sites with
HTGW after accounting for the confounding comorbidi-
ties (Table 2). Using an interactive model, we tested for
association between HTGW, high waist circumference
(with normal triglyceride levels), or high triglyceride
levels (with normal waist circumference), and DNA
methylation at each of the sites. For each CpG site, we
found the strongest association to be with the HTGW
phenotype. We also examined whether the strategy to
include medication use as a covariate in the regression
models was confounding the associations. For this, we
ran two sets of models for each of these sites, one ignor-
ing concurrent medication use and the second restrict-
ing the analyses to only those individuals who were not
receiving any medication. The results of these analyses
(see Additional file 4: Table S3) showed that all associa-
tions remained significant irrespective of the strategy

used to account for medication use. We had previously
found these sites to be associated with T2D [30], and
next considered whether this is mediated through their
association with HTGW. For this, we used Sobel’s
method of estimating mediation [32] and found that the
mediation parameter was statistically significant for each
of these three sites. Together, these results show that not
only are these three CpG sites strongly and independ-
ently associated with HTGW, but it is likely that the as-
sociation of these sites with T2D is partly but
significantly explained through HTGW.
We further considered whether the three significantly

associated CpG sites contain redundant statistical infor-
mation. For this, we ran a series of four models (Table 3),
in which each significant CpG site was added to the
polygenic regression model in a forward stepwise man-
ner. For each step, we estimated the Kullback–Leibler R2

(K-L R2) as a measure of information content. We ob-
served that the addition of each CpG site was associated
with a statistically significant improvement in the K-L R2

statistic. The final model that included the clinical covar-
iates along with all three CpG sites accounted for 19.67 %
of the inter-individual variability in HTGW (Table 3).
Considering that the base model shown in Table 3

a

b

c

d

e

f

Fig. 2 Distribution of DNA methylation scores for the significantly associated CpG sites in the study participants. Panels a, c, and e show
histograms based on all study participants while panels b, d, and f show box plots for the corresponding CpG site in those with (red boxes) or
without (yellow boxes) HTGW
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accounted for 10.15 % of HTGW variability, our results
indicate that the top three significantly associated CpG
sites accounted for an additional 9.52 % of the inter-
individual variability in HTGW. Together, these results
show that the three sites were significantly, specifically,
and independently associated with the HTGW phenotype.

Validation of HumanMethylation450 BeadChip array by
pyrosequencing
We validated the measurements made by the Human-
Methylation450 BeadChip array by pyrosequencing. We
have previously demonstrated that for the cg06500161
CpG site within ABCG1, there was a significant con-
cordance between the results obtained by HumanMethy-
lation450 BeadChip array and by pyrosequencing
(Spearman’s ρ = 0.42, p < 0.0001) [30]. Here, we demon-
strate that a significant correlation also exists between
the results of these two techniques for the most signifi-
cantly associated CpG site in CPT1A, cg00574958. We
observed a statistically significant correlation between
the levels of methylation measured by the microarray
and by pyrosequencing (Spearman’s ρ = 0.47, p < 0.0001;
Fig. 3a). In general, the microarray reported inflated
levels of DNA methylation compared to that measured
by pyrosequencing. Therefore, we formally tested the
agreement between these two methods by using Bland-
Altman plot analysis (Fig. 3b). We found that on aver-
age, pyrosequencing reported methylation levels about
6.2 % less than those of the microarray. However, the
limits of agreement between these two methods ranged
from −0.102 to −0.022 and only 27 (~3.2 %) samples lay
outside these limits (Fig. 3b, dots colored red). Pitman’s
test of unequal variances was also not significant (p =
0.144). Thus, our results indicate that there was a mod-
erate correlation and a very good agreement between
the results obtained by microarray and pyrosequencing
techniques. Consistently, we also noticed that the me-
dian DNA methylation measured by pyrosequencing was
lower in individuals with HTGW as compared to those
without HTGW (Fig. 3c). Further, when we ran poly-
genic regression models and adjusted for the same co-
variates as mentioned in Model 1, Table 2, we found that
the regression coefficient for pyrosequencing-based
methylation at cg00574958 was −0.28 (p = 4.4 × 10−7).

Thus, our results using the HumanMethylation450
BeadChip array were reproducible and in agreement
with those derived using pyrosequencing.

Discussion
Our study reports several novel findings: (1) the preva-
lence of HTGW in our sample of Mexican Americans is
~26 %; (2) HTGW is a significant independent predictor
of T2D as well as fasting glucose, insulin levels and insu-
lin resistance; (3) HTGW is significantly heritable; (4)
DNA methylation within the 5’UTR region of CPT1A
and in the gene body of ABCG1 is significantly associ-
ated with HTGW, independent of related comorbidities;
(5) methylation at the top three significantly associated
CpG sites (in CPT1A and ABCG1) together account for
9.52 % of the variability of HTGW, which is unlikely to
be due to surrounding sequence variants. We also ob-
served that seemingly small changes in DNA methyla-
tion levels (<2 % at all three identified CpG sites) are
associated with HTGW. This finding implies that DNA
methylation levels may be regulated with considerable
plasticity and that small departures from such plasticity
may have implications in disease pathogenesis through
altered gene expression. It is important to consider these
observations in the light of existing literature, study limi-
tations, and clinical implications.
Using a previously established definition of HTGW [5,

33–36], our estimate of the prevalence of HTGW is
within the range of 12.1–35 % prevalence previously re-
ported by various studies across the world [6, 8, 37–41],
and is comparable to that reported from a nationally
representative US sample [42]. However, within our co-
hort, the prevalence of high waist circumference
exceeded the prevalence of hypertriglyceridemia, which
raises the possibility that in our study population, there
was higher likelihood of accumulation of subcutaneous
rather than visceral adipose tissue. Interestingly, such a
finding has been confirmed with computerized tom-
ography studies in Mexican American women [43].
This hypothesis needs to be tested and confirmed in
future studies.
HTGW remains a largely understudied phenotype and

neither its genetic nor epigenetic basis is known. Our
study provides two initial observations in this regard.

Table 3 Improvement in Kullback-Leibler R2 by including CpG sites significantly associated with HTGWa

Model K-L R2 ΔK-L R2 P

Baseb 0.1015 - -

Base + cg00574958 0.1284 0.0269 2.8 × 10−15

Base + cg00577958 + cg17058475 0.1728 0.0444 0.0302

Base + cg00574958 + cg17058475 + cg06500161 0.1967 0.0239 2.1 × 10−6

aAnalyses show the improvement in K-L R2 statistic for a model compared to the preceding model
bIncluded following covariates: age, age2, sex, age × sex interaction, and age2 × sex interaction, Illumina Sentrix® ID and Sentrix® position (to account for batch
effects), use of anti-lipid, anti-hypertensive and anti-diabetic medications, and cellular heterogeneity
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First, it reconfirms the association between HTGW and
T2D-related traits [3, 7, 8, 41, 44, 45], which has previ-
ously been observed in other populations, and we now

replicate in Mexican American families. Second, estima-
tion of heritability is often considered an essential first
step towards understanding the genetic basis of a pheno-
typic trait, and we find that HTGW is indeed signifi-
cantly heritable (h2r = 0.52). These results advocate a
need for the HTGW phenotype to be intensively investi-
gated from a genetic perspective. It should be noted that
since HTGW captures two components of the metabolic
syndrome (central obesity and dyslipidemia), this pheno-
type is likely to be associated with coexisting conditions
like hypertension, hyperglycemia, insulin resistance, and
type 2 diabetes in epidemiological studies. In this study,
we used robust statistical models to account for the
presence of these comorbidities, and we suggest that fu-
ture studies on the HTGW phenotype also be carefully
designed so as to understand the true associations, not
confounded by comorbidities.
We did not observe any genome-wide statistically sig-

nificant associations between SNPs and HTGW. To our
knowledge, this is the first genome-wide association study
examining HTGW. Genome-wide association analyses
have identified at least 36 loci associated with triglyceride
levels, including prominent replicable associations in well
implicated lipid genes LPL, APOA1, LIPC, and CETP [46–
49]. Conversely, only a few loci have been implicated in
waist circumference via genome-wide association studies,
namely MCR4, TFAP2B, MSRA, NRXN3, and MAP3K1,
although in most cases, these loci have not been replicated
[50–54]. Our genome-wide association study of HTGW
did not establish any of the previously identified loci for
either triglyceride levels or waist circumference, and our
most significant loci were on chromosomes 2, 4, 11, 13,
and 20. While these loci may represent novel determi-
nants of HTGW, it should be remembered that given the
small effect sizes that specific genotypes typically inflict
upon complex phenotypes, it is likely that our cohort is
underpowered to detect such effects.
Although we did not find any evidence for association be-

tween sequence variation and HTGW in our cohort, we
identified three CpG sites whose DNA methylation levels
were associated with HTGW, and these associations were
largely independent of other metabolic syndrome pheno-
types or DNA sequence variation. Our most striking obser-
vation is the highly significant association between the
CPT1A-related CpG sites and HTGW, which was inde-
pendent of related phenotypes (blood pressure, obesity and
T2D). Carnitine palmitoyltransferase acts at the outer mito-
chondrial membrane to escort long-chain fatty acids into
the mitochondria for β oxidation [55]. The CPT1A gene
that regulates the expression of this enzyme is 60 kb long
and contains 20 exons, and is located on chromosome 11
[56, 57]. It is regulated by PPARA, a nuclear transcription
factor that plays a critical role in the oxidation of fatty
acids [58, 59]. Considering this molecular nexus, the role

a

b

c

Fig. 3 Agreement between the results of HumanMethylation450
BeadChip array and pyrosequencing for the cg00574958 CpG site. a
Correlation scatter plot. b Bland-Altman plot of the difference in the
measurements of the two methods (ordinate) versus the mean
(abscissa). Limits of agreement (LAG) are shown pictorially using
dashed horizontal lines. Samples that fall outside the LAG are colored
red. c Distribution of the DNA methylation as measured by
pyrosequencing in individuals with (red box) and without
(yellow box) HTGW
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of CPT1A in triglyceride metabolism is now well estab-
lished. However, the role of this gene in waist girth is less
obvious. Two population based studies [24, 60] have
shown association of sequence variants in CPT1A with
various indices of obesity including waist circumference,
but the exact mechanism by which CPT1A might contrib-
ute to altered adiposity remains unknown. We cannot
comment on the precise mechanisms involved, but this
opens up a possible and interesting thread of research for
future studies. Our results are in line with the emerging
evidence that methylation in the promoter region of
CPT1A and specifically at the cg00574958 site is associ-
ated with several aspects of triglyceride biochemistry in-
cluding associations with lipoprotein sub-fractions,
hypertriglyceridemia, and the effect of lipid lowering drugs
[22, 23, 61].
Our results indicate that the other gene that might play

a role in HTGW by way of altered methylation levels is
the ATP binding cassette G1 (ABCG1) gene. There is in-
creasing evidence to show that this gene plays an import-
ant role in triglyceride metabolism [62–65]. For example,
a recent epigenome-wide study [63] has found a strong as-
sociation between the same CpG site (cg06500161) that
we observed and plasma triglycerides. Although the exact
mechanism for the implication of this gene in triglyceride
metabolism is unclear, it has been posited that the gene
modulates bioavailability of plasma lipoprotein lipase and
thus induces lipid accumulation in a triglyceride-rich en-
vironment [66]. Moreover, another recent epigenome-
wide association study identified methylation at ABCG1 to
be significantly associated with waist circumference [67].
It is of interest that we previously observed a strong asso-
ciation of the cg06500161 CpG site with several type 2
diabetes-related traits in this Mexican American cohort
[30], and others also found it to be associated with insulin
resistance [68]. Thus, these findings raise the possibility
that methylation at ABCG1 may provide critical insights
into the reported [69] association of central obesity
(HTGW) and type 2 diabetes.
Interestingly, we found a marginally significant associ-

ation (at the level of the epigenome) between the CpG
site cg19693031, in TXNIP, and HTGW. The TXNIP
protein regulates intra- and extra-cellular reduction-
oxidation cycles [70, 71] and genetic variations in this
gene have previously been shown to be associated with
hypertriglyceridemia in individuals with T2D [72].
Therefore, TXNIP also appears to be an attractive candi-
date involved in the pathogenesis of T2D mediated by
HTGW. Future replications and mechanistic studies are
required to definitively support the associations observed
in this study.
It should be noted that two of the three significantly

associated CpG sites contained a SNP within the probe
sequence, and it is therefore possible that these SNPs

may drive the methylation-HTGW association. However,
in a subset of 197 Mexican Americans for whom deep
sequencing data was available, we previously found that
the SNP was either not present in our cohort subset (for
the rs78442314/cg00574958-containing probe), or that it
does not significantly influence DNA methylation levels
(for the rs9982016/cg06500161-containing probe) [30].
Further, we had observed that association between a
SNP and methylation score was much more likely if the
SNP was at the CpG site rather than elsewhere within
the probe. Together these observations suggest that the
CpG sites significantly associated with HTGW in our
cohort are unlikely to have been driven by the SNPs
contained within the probes and highlights the need for
careful consideration of probe-exclusion criteria to avoid
the potential loss of important biological associations.
Some limitations of our study need to be considered

before generalizing these results. First, our study cannot
directly demonstrate the directionality of the methyla-
tion ➔ gene expression ➔ phenotype association. How-
ever, it has been shown that methylation at cg00574958
can influence expression of CPT1A and that methyla-
tion within ABCG1 also influences expression of the
gene [22, 63]. Second, DNA methylation is regulated
both genetically and environmentally. Since there is a
strong environmental correlation between waist circum-
ference and triglycerides, methylation at CPT1A and
ABCG1 is associated with HTGW, and HTGW is a sig-
nificant predictor of type 2 diabetes related traits, our
study points towards possible environmental links with
known modifiers of methylation such as diet, physical
activity, and pharmacological interventions [73, 74].
These possibilities need to be explored further in the fu-
ture, and may provide stronger justification for putative
preventive interventions.

Conclusions
Prevalence of HTGW and its importance as a marker of
T2D has not been clearly demonstrated in Mexican
Americans—a high-risk, minority population in the
USA. In addition to characterizing HTGW in our study
cohort, our results also raise the possibility for an epi-
genetic basis of HTGW. Our epigenome-wide and
genome-wide association studies show that HTGW may
be mediated by epigenetic factors, and may also be influ-
enced by the environment. We have identified two CpG
sites (cg00574958 and cg17058475) in the 5’ UTR of
CPT1A and one CpG site (cg06500161) in the body of
ABCG1, which are associated with HTGW. These genes
are involved in β oxidation of long-chain fatty acids and
triglyceride storage, respectively. Our results highlight
the role of epigenetics in HTGW, which is an important
marker of T2D and cardiovascular disease.
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Methods
Study participants
Participants in this study were from the San Antonio
Family Heart Study [28, 29], an ongoing prospective
evaluation of Mexican American families living in San
Antonio. A total of 850 participants from 39 families
were included in the analysis. The recruitment and as-
certainment of participants and their phenotyping and
genotyping have been extensively described elsewhere
[29, 75]. This data was collected in the third wave of as-
certainment (2002–2006). Peripheral blood samples were
collected following an overnight fast and extensive an-
thropometric phenotyping was conducted.

Ethics, consent, and permissions
Written consent was obtained for all individuals in this
study. This study was approved by the Institutional Re-
view Board at The University of Texas Health Science
Center at San Antonio.

Phenotypes
Our main phenotype of interest was HTGW, which does
not presently have a uniform definition across studies [5, 6,
39, 44, 45, 76]. In our study, we defined HTGW as high
waist circumference (≥90 cm in males and ≥85 cm in fe-
males) combined with high serum triglyceride concentra-
tion (≥2.0 mmol/L in males and ≥1.5 mmol/L in females)
[5, 33–36]. Other phenotypes included in this study were:
age, sex, systolic and diastolic blood pressure, use of anti-
lipid, anti-hypertensive and anti-diabetic medications, pres-
ence of type 2 diabetes (diagnosed using the ADA criteria
[77], fasting glucose ≥7 mmol/L), triglycerides, waist cir-
cumference, and presence of obesity (body mass index
≥30 kg/m2). Methods used to measure these and other phe-
notypes have been described previously [29, 75].

Genotyping
Study participants were previously genotyped for approxi-
mately one million single nucleotide polymorphism
markers using several Illumina genotyping arrays, including
the HumanHap550v3, HumanExon510Sv1, Human1Mv1,
and Human1M-Duov3. The Infinium Whole-Genome
Genotyping Assay was employed according to manufac-
turers’ instructions. Details of the data cleaning and imput-
ing steps for this genotypic data have been described
previously [20]. Out of a total of 995,320 SNPS genotyped,
we incorporated 759,809 SNPs into the association ana-
lyses, which had ≥97 % call rate, a minor allele frequency
≥5 % and a Hardy-Weinberg significance value ≥0.001.

DNA methylation assays and data preprocessing
DNA samples (500 ng) obtained from peripheral blood
cells were bisulfite-converted using the EZ-96 DNA

Methylation™ Kit (Zymo Research, Irvine, CA) and were
subjected to methylation profiling using the Illumina
Infinium HumanMethylation450 BeadChip assay (Illu-
mina, San Diego, CA). The array interrogated 485,577
CpG sites across the genome and incorporated both Infi-
nium I and Infinium II bead types. The Illumina iScan
was used to scan the BeadChips and raw data was
imported into GenomeStudio (V2011.1) to extract image
intensities, following background subtraction and
normalization to inbuilt controls on the arrays.
Methylation at each CpG site was quantified on a scale

from zero (representing fully unmethylated) to one (repre-
senting fully methylated) as a methylation score (β). Probes
that were located on the sex chromosomes (n = 11,648), that
were non-CpG loci (n = 2,994) or that analyzed SNPs (n =
65) were excluded. To correct for differences due to Infi-
nium I and Infinium II probe designs, we used the BMIQ
method implemented in the R-based software, BMIQ [78].
We included only those probes for which heritability

analyses could be successfully completed without conver-
gence failures. For 12,154 (2.5 %) probes SOLAR was un-
able to achieve convergence, leaving a total of 458,716
CpG sites available for analysis. Of these, 1385 probes had
detection p values >0.01 in >5 % of the samples and there-
fore we excluded these probes leaving a total of 457,331
CpG sites that were finally included in this study. To
minimize loss of informative associations, we did not ex-
clude SNP-containing or cross-reactive probes but rather
investigated whether the significantly associated CpG sites
could have been confounded due to these characteristics.

Pyrosequencing
For validation of the Illumina microarray data, we
performed pyrosequencing on our most significant as-
sociation (cg00574958 in the CPT1A). For each sam-
ple, 500 ng of genomic DNA was bisulfite converted,
PCR-amplified, and subjected to pyrosequencing with
the PyroMark96 MD (Qiagen, Valencia, CA). Percent
DNA methylation was determined using PyroMark
CpG software 1.0.11.14. The PCR was carried out at
95 °C for 5 min, followed by 40 cycles of 95 °C for
1 min, 56.6 °C for 1 min and 72 °C for 1 min, and a
final extension at 72 °C for 7 min. Pyrosequencing
was carried out according to the manufacturers’ in-
structions, and PCR and sequence primers (designed
using the Pyromark Assay Design 2.0 software) were
designated as

Forward primer:
GTTTTTGGTATTGAGGTAAAATTAA
Reverse primer (biotinylated):
AACCTTTCCAAATTCTTTAAAAC
Sequence primer:
TTTTTGGTATTGAGGTAAAATTAAT
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Statistical analysis
To ensure compatibility with the variance component
framework and that the observed associations were un-
affected by any undetected skew, we used an inverse
normalization preprocessing step for the BMIQ-
normalized methylation β values to circumvent any dis-
tributional aberrations. This step included ranking the
raw values, generating cumulative density functions, and
determining z-values based on the cumulative densities.
All the transformed values were thus distributed as
N(0,1) and could be represented on a common, compar-
able metric of z-values.
Family studies such as the present one have an added

advantage that they can shed genetic light on the pheno-
types under study. We first estimated the heritability
(defined as the proportion of variability explained by
genetic similarity among individuals) of HTGW using a
polygenic regression model as follows:

l HTGWð Þ ¼ μþ baþgi þ ei

where l(HTGW) is the liability function of HTGW, μ is
the overall mean liability, b is the regression coefficient
vector corresponding to the covariate matrix a, gi is the
polygenic effect, and ei is the measurement error. Herit-
ability was then estimated as the ratio of variance due to
genetic similarity (modeled as gi in the equation above)
and the total phenotypic variability, Ω. The covariates
used for the estimation of heritability of HTGW were:
age, age2, sex, age × sex interaction, age2 × sex interaction,
use of anti-lipid, anti-hypertensive and anti-diabetic medi-
cations, systolic blood pressure, diastolic blood pressure,
and presence of type 2 diabetes and obesity (body mass
index ≥30 kg/m2). Statistical significance of heritability
(Ho: heritability = 0) was tested by constraining the herit-
ability to 0 and comparing the likelihood ratio statistics of
the constrained and unconstrained models.
For genome-wide association analyses, we used poly-

genic regression models that accounted for age, age2,
sex, age × sex interaction, and age2 × sex interaction, the
top four principal components to quantify ancestry-
based population admixture, and use of anti-lipid, anti-
hypertensive, and anti-diabetic medications.
Our methylation studies used blood which contains a

mixture of cell types. Reinius et al. [79] and Houseman et
al. [80] have demonstrated the influence of differential cell
proportions on DNA methylation signatures using different
array platforms. Jaffe et al. [81] have extended this proced-
ure to the Illumina Infinium HumanMethylation450 array.
We estimated the proportion of CD4+ T cells, CD8+ T
cells, B cells, natural killer cells, and granulocytes in each
sample using the procedure described by Jaffe et al. [81]
and adjusted all the polygenic regression models for these
estimated cell counts as covariates. To test the association

of DNA methylation at each CpG site with the liability
function of HTGW, we ran polygenic regression models for
each CpG site. In each model, we used age, age2, sex, age ×
sex interaction, and age2 × sex interaction, Illumina Sentrix®
ID, Sentrix® position, estimated cell counts, and use of anti-
lipid, anti-hypertensive, and anti-diabetic medications as
covariates. Additional covariates were used for specific ana-
lyses and are described in the Results section. In particular,
where warranted, we accounted for comorbidities (systolic
blood pressure, diastolic blood pressure and presence of
type 2 diabetes and obesity) that might influence the
HTGW phenotype. Statistical significance for association
was tested by constraining the regression coefficient to 0
and comparing the likelihood ratio statistics of the con-
strained and unconstrained model.
For heritability analyses as well as association analyses,

we first estimated the genomic inflation factor (λmedian)
which was defined as the median χ2LL/invchi(0.5,1) where
invchi(p,d) is the inverse χ2 function for probability (p) and
degrees of freedom (d), and corrected the nominal signifi-
cance values for the estimated λmedian. Additionally, we
used the Benjamini-Hochberg procedure of false discovery
rate (FDR) control for multiple testing correction. Signifi-
cance was assessed at a global type I error rate of 0.05. The
odds ratio (OR) for the association between HTGW and
inverse-normalized methylation score was determined as

e�
ffiffiffi
π

p
β where β represents the polygenic regression coeffi-

cient. The association of DNA methylation with type 2 dia-
betes that was mediated through HTGW was estimated
using Sobel’s parameter [32]. For this, we ran two regres-
sion models for each site—the first model contained
HTGW as the outcome and methylation (along with other
covariates) as a predictor while the second model used
T2D as the outcome and HTGW, methylation and other
covariates as predictors. The regression coefficients from
these two models were then multiplied to derive a quanti-
fied measure of mediation. Standard errors for this param-
eter were estimated as described by Sobel [32].
To parse out the genetic and environmental covariance,

we used the methods entailed under bivariate trait ana-
lyses [82–84]. Under this analytical framework, the pheno-
typic covariance (ρP

2) is regarded as a function composed
of the additive genetic (ρG

2 ) and environmental (ρE
2) covari-

ances between two traits (denoted below as i and j).

ρP i;jð Þ ¼ ρG i;jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
hi

2hj
2

q
þ ρE i;jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−hi2
� �

1−hj2
� �q

These parameters are estimated using an estimation-
maximization algorithm by jointly utilizing all available
pedigree information with a multivariate normal model
for continuous traits and liability threshold model for
discrete traits [85–87].
Other statistical methods used were Spearman’s correl-

ation scatter plots and Bland-Altman plots to test for
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the agreement between different methods of measuring
DNA methylation. Heritability, association, and bivariate
trait analyses were conducted using the SOLAR software
package [88], and all other statistical analyses were con-
ducted using the Stata 12.0 (Stata Corp, College Station,
TX) package.
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