3 research outputs found

    Multiphase CFD modeling of front propagation in a Hele-Shaw cell featuring a localized constriction

    Full text link
    We study a liquid-gas front propagation in a modulated Hele-Shaw cell by means of multiphase computational fluid mechanics based on the three-dimensional Navier-Stokes equations. In the simulations an obstacle that partially fills the gap is placed at the center of the cell, and the liquid-gas interface is driven at a constant velocity. We study the morphological differences between imbibition and drainage for a wide range of capillary numbers, and explore how the wetting properties of the constriction affect the amount of liquid that remains trapped in the draining process. We observe increasing remaining volumes with increasing capillary number and decreasing contact angle. The present CFD implementation for a single mesa defect provides insight into a wide number of practical applications

    Scalable method for bio-based solid foams that mimic wood

    No full text
    | openaire: EC/H2020/857470/EU//NOMATENMimicking natural structures allows the exploitation of proven design concepts for advanced material solutions. Here, our inspiration comes from the anisotropic closed cell structure of wood. The bubbles in our fiber reinforced foam are elongated using temperature dependent viscosity of methylcellulose and constricted drying. The oriented structures lead to high yield stress in the primary direction; 64 times larger than compared to the cross direction. The closed cells of the foam also result in excellent thermal insulation. The proposed novel foam manufacturing process is trivial to up-scale from the laboratory trial scale towards production volumes on industrial scales.Peer reviewe
    corecore