123 research outputs found

    Search for domain wall dark matter with atomic clocks on board global positioning system satellites

    Full text link
    Cosmological observations indicate that 85% of all matter in the Universe is dark matter (DM), yet its microscopic composition remains a mystery. One hypothesis is that DM arises from ultralight quantum fields that form macroscopic objects such as topological defects. Here we use GPS as a ~ 50,000 km aperture DM detector to search for such defects in the form of domain walls. GPS navigation relies on precision timing signals furnished by atomic clocks hosted on board GPS satellites. As the Earth moves through the galactic DM halo, interactions with topological defects could cause atomic clock glitches that propagate through the GPS satellite constellation at galactic velocities ~ 300 km/s. Mining 16 years of archival GPS data, we find no evidence for DM in the form of domain walls at our current sensitivity level. This allows us to improve the limits on certain quadratic scalar couplings of domain wall DM to standard model particles by several orders of magnitude.Comment: 7 pages (main text), and 12 pages for Supplementary Information. v3: Update titl

    The iNaturalist Species Classification and Detection Dataset

    Get PDF
    Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current non-ensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.Comment: CVPR 201

    Photoionization of High Altitude Gas in a Supernova-Driven Turbulent Interstellar Medium

    Full text link
    We investigate models for the photoionization of the widespread diffuse ionized gas in galaxies. In particular we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium have low density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find ionizing fluxes throughout our simulation grids are larger than predicted by one dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Halpha. In previous studies of such clouds the photoionization scenario had been rejected and the Halpha had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Halpha observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high altitude diffuse ionized gas in a realistic three-dimensional interstellar medium.Comment: ApJ accepted. 17 pages, 7 figure

    Samplers 2

    Get PDF
    Esta es una tesina que se encuentra estrictamente relacionada con los conceptos de ciencia abierta y ciencia ciudadana y busca colaborar de algún modo con estos movimientos. La forma de colaboración es mediante la implementación de un sistema que permita a los científicos generar de manera uniforme una secuencia de pasos para la toma de muestras que sean necesarias para cualquier proyecto. Por otra parte, también permite a ciudadanos que quieran participar de estos proyectos recolectar muestras siguiendo la secuencia de pasos que los científicos hayan definido previamente. Se buscó solucionar la falta de aplicaciones que se enfoquen en la recolección de datos y que a la vez se apoyen en tecnología móvil. Si bien existen aplicaciones similares, estas son más de propósito general, por lo que Muestre.AR vendría a suplir esta carencia. La forma de resolverlo fue mediante la creación de una aplicación web centralizada que es donde los científicos van a poder crear o editar sus proyectos y una única aplicación móvil que es donde los ciudadanos van a poder participar de los proyectos creados previamente por los científicos en la aplicación web y van a poder realizar la recolección de muestras.Facultad de Informátic

    Vertical structure of a supernova-driven turbulent magnetized ISM

    Full text link
    Stellar feedback drives the circulation of matter from the disk to the halo of galaxies. We perform three-dimensional magnetohydrodynamic simulations of a vertical column of the interstellar medium with initial conditions typical of the solar circle in which supernovae drive turbulence and determine the vertical stratification of the medium. The simulations were run using a stable, positivity-preserving scheme for ideal MHD implemented in the FLASH code. We find that the majority (\approx 90 %) of the mass is contained in thermally-stable temperature regimes of cold molecular and atomic gas at T < 200 K or warm atomic and ionized gas at 5000 K < T < 10^{4.2} K, with strong peaks in probability distribution functions of temperature in both the cold and warm regimes. The 200 - 10^{4.2} K gas fills 50-60 % of the volume near the plane, with hotter gas associated with supernova remnants (30-40 %) and cold clouds (< 10 %) embedded within. At |z| ~ 1-2 kpc, transition-temperature (10^5 K) gas accounts for most of the mass and volume, while hot gas dominates at |z| > 3 kpc. The magnetic field in our models has no significant impact on the scale heights of gas in each temperature regime; the magnetic tension force is approximately equal to and opposite the magnetic pressure, so the addition of the field does not significantly affect the vertical support of the gas. The addition of a magnetic field does reduce the fraction of gas in the cold (< 200 K) regime with a corresponding increase in the fraction of warm (~ 10^4 K) gas. However, our models lack rotational shear and thus have no large-scale dynamo, which reduces the role of the field in the models compared to reality. The supernovae drive oscillations in the vertical distribution of halo gas, with the period of the oscillations ranging from ~ 30 Myr in the T < 200 K gas to ~ 100 Myr in the 10^6 K gas, in line with predictions by Walters & Cox.Comment: Accepted for publication in ApJ. Replacement corrects an error in the observed CNM pressure distribution in Figure 15 and associated discussio

    Periodical cicada emergence resource pulse tracks forest expansion in a Tallgrass prairie landscape

    Get PDF
    Understanding factors that influence resource pulses is an important aspect of ecosystem ecology. We quantified below‐ to aboveground energy and nutrient fluxes during the 2015 periodical cicada emergence from forest habitats in a tallgrass prairie matrix and compared results to our prior studies of the 1998 emergence in the same watershed. We estimated 35.2 million cicadas emerged across 159 ha in 2015, almost 2× more than the 19.6 million across 98 ha in 1998. The 2015 emergence resulted in below to aboveground fluxes of 9.4 metric tons of ash‐free dry mass and 1.12 metric tons of N, both ~2× greater than 1998. This corresponds to 59 kg C/ha and 7 kg N/ha in and adjacent to forested areas in 2015. Increased emergence in 2015 was a result of spatial expansion of cicadas, not higher densities. Periodical cicadas are expanding with forest habitats in this region. Cicadas expand into and oviposit in ~40% of available forest habitat during each emergence. Accordingly, we predict the 2032 emergence will span ~245 ha. Our study demonstrates how human alterations to a landscape, in this case forest expansion linked to fire suppression and reduced grazing, can alter the magnitude and extent of a resource pulse

    Integrated computational and Drosophila cancer model platform captures previously unappreciated chemicals perturbing a kinase network

    Get PDF
    Drosophila provides an inexpensive and quantitative platform for measuring whole animal drug response. A complementary approach is virtual screening, where chemical libraries can be efficiently screened against protein target(s). Here, we present a unique discovery platform integrating structure-based modeling with Drosophila biology and organic synthesis. We demonstrate this platform by developing chemicals targeting a Drosophila model of Medullary Thyroid Cancer (MTC) characterized by a transformation network activated by oncogenic dRetM955T. Structural models for kinases relevant to MTC were generated for virtual screening to identify unique preliminary hits that suppressed dRetM955T-induced transformation. We then combined features from our hits with those of known inhibitors to create a ‘hybrid’ molecule with improved suppression of dRetM955T transformation. Our platform provides a framework to efficiently explore novel kinase inhibitors outside of explored inhibitor chemical space that are effective in inhibiting cancer networks while minimizing whole body toxicity

    Homology for higher-rank graphs and twisted C*-algebras

    Get PDF
    We introduce a homology theory for k-graphs and explore its fundamental properties. We establish connections with algebraic topology by showing that the homology of a k-graph coincides with the homology of its topological realisation as described by Kaliszewski et al. We exhibit combinatorial versions of a number of standard topological constructions, and show that they are compatible, from a homological point of view, with their topological counterparts. We show how to twist the C*-algebra of a k-graph by a T-valued 2-cocycle and demonstrate that examples include all noncommutative tori. In the appendices, we construct a cubical set \tilde{Q}(\Lambda) from a k-graph {\Lambda} and demonstrate that the homology and topological realisation of {\Lambda} coincide with those of \tilde{Q}(\Lambda) as defined by Grandis.Comment: 33 pages, 9 pictures and one diagram prepared in TiK
    corecore