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HOMOLOGY FOR HIGHER-RANK GRAPHS AND TWISTED
C∗-ALGEBRAS

ALEX KUMJIAN, DAVID PASK, AND AIDAN SIMS

Abstract. We introduce a homology theory for k-graphs and explore its fundamental
properties. We establish connections with algebraic topology by showing that the homol-
ogy of a k-graph coincides with the homology of its topological realisation as described by
Kaliszewski et al. We exhibit combinatorial versions of a number of standard topological
constructions, and show that they are compatible, from a homological point of view, with
their topological counterparts. We show how to twist the C∗-algebra of a k-graph by a
T-valued 2-cocycle and demonstrate that examples include all noncommutative tori. In

the appendices, we construct a cubical set Q̃(Λ) from a k-graph Λ and demonstrate that

the homology and topological realisation of Λ coincide with those of Q̃(Λ) as defined by
Grandis.

1. Introduction

In this paper we initiate the study of homology for higher-rank graphs. We develop a
suite of fundamental results and techniques, and also establish connections with a num-
ber of related areas: Via the topological realisations of k-graphs introduced in [21], we
establish connections with the cubical approach to algebraic topology used in [30]. We
also show in an appendix how our approach connects the theory of k-graphs to the theory
of cubical sets discussed in, for example, [5, 13, 14, 15, 19]. Our key motivation, how-
ever, is that our homology theory and in particular the associated cohomology theory
promises to have an interesting application to C∗-algebras. We discuss this application in
Section 7: we introduce the cohomology theory corresponding to our homology and show
that T-valued 2-cocycles on a k-graph can be used to twist its C∗-algebra. As examples
we obtain all noncommutative tori and the Heegaard-type quantum 3-spheres of Baum,
Hajac, Matthes and Szymański (see [1]). A more detailed study of the cohomology of
k-graphs and the structure theory of the associated C∗-algebras will be the subject of
future work.

Higher-rank graphs, or k-graphs, were introduced by the first two authors in [25] as a
combinatorial model for the higher-rank Cuntz-Krieger algebras discovered and analysed
by Robertson and Steger [38], and to unify the constructions of many other interesting
C∗-algebras [24]. The C∗-algebras of higher-rank graphs have been studied by numerous
authors over the last decade (see, for example, [6, 7, 10, 11, 40, 41, 43]).

The combinatorial properties of a k-graph suggest a sort of k-dimensional directed
graph, and this point of view has been borne out in numerous ways in the study of k-graph
C∗-algebras. More recently, however, it has begun to suggest relationships with topology.

2010 Mathematics Subject Classification. Primary 46L05; Secondary 18G60, 55N10.
Key words and phrases. higher-rank graph; C∗-algebra; homology; cubical set; topological realization.
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2 ALEX KUMJIAN, DAVID PASK, AND AIDAN SIMS

These connections first arose in [33, 34] where a theory of coverings and a notion of funda-
mental group for k-graphs was developed. These notions closely parallel the topological
theory, but were motivated by C∗-algebraic considerations: the authors demonstrated
that coverings of k-graphs correspond to relative skew products which in turn correspond
to coaction crossed products and crossed products by homogeneous spaces.

The topological flavour of some of the results of [33, 34] suggest that each k-graph
should have a topological realisation, which would be a k-dimensional CW complex, and
that the k-graph could profitably be viewed as a combinatorial version of its topological
realisation [33, Section 6]. Current work of the first and third authors with Kaliszewski
and Quigg [21] bears this idea out, showing in particular that the fundamental groups
of a k-graph and of its topological realisation are isomorphic and that many well-known
k-graph constructions are well-behaved with respect to fundamental groups.

In the current paper, we expand on this idea further by commencing the study of
homology of higher-rank graphs. After recalling basic definitions and notation in Section 2,
we proceed in Section 3 to define our homology, prove that it is a functor, show that we can
measure connectedness by the 0th homology group, and show that the 1-cycles correspond
naturally to integer combinations of undirected cycles in the k-graph.

In Section 4, we prove analogs of a number of standard theorems in algebraic topology
for our homology. For example we show that the Künneth formula holds for the homology
of a cartesian product of higher-rank graphs, and that the homology of the quotient of
an acyclic k-graph by a free action of a discrete group G is isomorphic to the homology
of G. We also show that every automorphism of a k-graph induces a long exact sequence
in homology which corresponds exactly to the long exact sequence for a mapping torus.

In Section 5, we use a combination of these results and direct calculation to describe
examples of 2-graphs whose homology is identical to that of the sphere, the torus, the
Klein bottle and the projective plane respectively; we also present these examples in a
way which indicates that their topological realisations should coincide with these four
spaces. Details of these homeomorphisms will appear in [21]. In Section 6, we use an
argument based on that given by Hatcher for simplicial complexes and singular homology
[17], to show that our homology for a k-graph agrees with the singular homology of its
topological realisation. This suggests strongly that our homology theory is a reasonable
one for k-graphs.

Section 7 gives a taste of the C∗-algebraic application which motivates our study of
homology for k-graphs: twisted k-graph C∗-algebras. We briefly discuss the cohomology
of a higher-rank graph and check that it satisfies the Universal Coefficient Theorem.
We introduce the notion of the C∗-algebra of higher-rank graph twisted by a T-valued
2-cocycle, and show that the isomorphism class of the C∗-algebra depends only on the
cohomology class of the cocycle. We then consider some basic examples of finite k-
graphs whose twisted C∗-algebras capture the noncommutative tori and the Heegaard-
type quantum 3-spheres of [1].

Our homology is modeled on the cubical version of singular homology in [30] and is
closely related to the homology of a cubical set introduced by Grandis [14]. We establish

in Appendix A that a k-graph Λ determines a cubical set Q̃(Λ), and that our homology

of Λ is isomorphic to Grandis’ homology of Q̃(Λ). Hence, in principle, some of our earlier
results (Theorem 4.9 and part of the statement of Theorem 4.3) could be recovered from
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Grandis’. However we provide a self-contained treatment avoiding unnecessary complica-
tions involving degeneracy maps: we believe that the resulting simplicity of presentation
justifies our approach. We demonstrate in Appendix B, that the topological realisation
of a k-graph as described in [21] is homeomorphic to the topological realisation, outlined
in [14], of the associated cubical set.

Acknowledgements. The idea that homology of k-graphs might be of interest first arose
from the study of topological realizations (see [21, 33]), which was suggested by John
Quigg. We thank Mike Whittaker for a number of helpful discussions and in particular
for his contributions to Examples 5.7 and 5.6. The second author thanks his coauthors
for their hospitality.

2. Preliminaries

As in [27], in our definition of a k-graph we will allow for the possibility of 0-graphs
with the convention that N0 is the trivial semigroup {0}. We insist that all k-graphs are
nonempty.

We adopt the conventions of [27, 33] for k-graphs. Given a nonnegative integer k, a
k-graph is a nonempty countable small category Λ equipped with a functor d : Λ → Nk

satisfying the factorisation property : for all λ ∈ Λ and m,n ∈ Nk such that d(λ) = m+n
there exist unique µ, ν ∈ Λ such that d(µ) = m, d(ν) = n, and λ = µν. When d(λ) = n
we say λ has degree n. We often use the same symbol d to denote the degree functor in
all k-graphs in this paper.

For k ≥ 1, the standard generators of Nk are denoted e1, . . . , ek, and for n ∈ Nk

and 1 ≤ i ≤ k we write ni for the ith coordinate of n. For n = (n1, . . . , nk) ∈ Nk let

|n| =
∑k

i=1 ni. If Λ is a k-graph, then for λ ∈ Λ, we write |λ| for |d(λ)|. For m,n ∈ Nk

we write m ≤ n if mi ≤ ni for all i ≤ k. We often implicitly identify Nk1+k2 = Nk1 ×Nk2 .
Given a k-graph Λ and n ∈ Nk, we write Λn for d−1(n). The vertices of Λ are the

elements of Λ0. The factorisation property implies that o 7→ ido is a bijection from the
objects of Λ to Λ0. The domain and codomain maps in the category Λ therefore determine
maps s, r : Λ → Λ0: for α ∈ Λ, the source s(α) of α is the identity morphism associated
with the object dom(α) and similarly, r(α) = idcod(α). An edge in a k-graph is a morphism
f with d(f) = ei for some i = 1, . . . , k. In keeping with graph terminology an element
λ ∈ Λ is often called a path.

A 0-graph is then a countable category whose only morphisms are the identity mor-
phisms, which we regard as a collection of isolated vertices.

Each 1-graph Λ is the path-category of the directed graph with vertices Λ0 and edges
Λ1 and range and source maps inherited from Λ. Conversely, if E is a directed graph, then
its path-category E∗ is a 1-graph under the length function. This leads to the unusual
convention that a path in E is a sequence of edges α1 · · ·αn such that s(αi) = r(αi+1) for
all i, and we write r(α) = r(α1) and s(α) = s(αn).

Let λ be an element of a k-graph Λ and suppose that 0 ≤ m ≤ n ≤ d(λ). By the
factorisation property there exist unique elements α ∈ Λm, β ∈ Λn−m and γ ∈ Λd(λ)−n such
that λ = αβγ. We define λ(m,n) := β. We then have λ(0,m) = α and λ(n, d(λ)) = γ.
In particular, for 0 ≤ m ≤ d(λ),

λ = λ(0,m)λ(m, d(λ)).

For v ∈ Λ0 and E ⊂ Λ, we write vE for E ∩ r−1(v) and Ev for E ∩ s−1(v).
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Definition 2.1 ([25, Definition 5.1] (see also [34])). Let G be a discrete group, (Λ, d) a
k-graph and c : Λ→ G a functor. The skew product k-graph Λ×cG is defined as follows:
as a set Λ×cG is the cartesian product Λ×G and d(λ, g) = d(λ) (so (Λ×cG)0 = Λ0×G)
with

s(λ, g) = (s(λ), gc(λ)) and r(λ, g) = (r(λ), g).

If s(λ) = r(µ) then (λ, g) and (µ, gc(λ)) are composable in Λ×c G and

(2.1) (λ, g)(µ, gc(λ)) = (λµ, g).

Examples 2.2. (1) For k ≥ 0 let Tk = Nk regarded as a k-graph with d : Tk → Nk the
identity map. So Tk has exactly one morphism of degree n for each n ∈ Nk, and
in particular a single vertex 0. For k ≥ 1, Tk is generated by the k commuting
elements, e1, . . . , ek.

(2) For n ≥ 1 let Bn be the path category of the directed graph with one vertex and n
distinct edges f1, . . . , fn. We refer to Bn as the 1-graph associated to the bouquet
of n-circles (see Example 4.11(1)).

(3) For n ≥ 2 let Fn be the free group on n generators {h1, . . . , hn} and define the
functor c : Bn → Fn by c(fi) = hi for i = 1, . . . , n. Let An denote the skew
product 1-graph Bn ×c Fn. The underlying directed graph associated to An is the
(right) Cayley graph of Fn and may be visualised as a uniform n-ary tree.

(4) For k ≥ 1 and m ∈ (N ∪ {∞})k, we write Ωk,m for the k-graph with

Ωk,m := {(p, q) ∈ Nk × Nk : p ≤ q ≤ m}
and with structure maps r(p, q) := (p, p), s(p, q) := (q, q), d(p, q) := q − p and
(p, q)(q, r) := (p, r). Define Ω0 := {0} and for k ≥ 1 let Ωk := Ωk,(∞,...,∞).

(5) For k ≥ 1, let ∆k be the k-graph with ∆k := {(p, q) ∈ Zk × Zk : p ≤ q} and
structure maps as in Ωk,m.

(6) Let (Λi, di) be a k-graph for i = 1, 2. The disjoint union Λ1 tΛ2 may be regarded
as a k-graph with d(λ) = di(λ) if λ ∈ Λi and with other structure maps likewise
inherited from the Λi.

(7) Let (Λi, di) be a ki-graph for i = 1, 2. Then (Λ1×Λ2, d1× d2) is a (k1 + k2)-graph
where Λ1×Λ2 is the product category and d1× d2 : Λ1×Λ2 → Nk1+k2 is given by
(d1 × d2)(λ1, λ2) = (d1(λ1), d2(λ2)) ∈ Nk1 × Nk2 for λ1 ∈ Λ1 and λ2 ∈ Λ2.

Let k1, k2 ≥ 1. Let π1 : Zk1+k2 → Zk1 denote the projection onto the first k1 coordinates
and π2 : Zk1+k2 → Zk2 denote the projection onto the last k2 coordinates. We frequently
regard πi as a homomorphism from Nk1+k2 to Nki .

A k-graph morphism between k-graphs is a degree-preserving functor. There is a cate-
gory whose objects are k-graphs and whose morphisms are k-graph morphisms. Whenever
we regard k-graphs as objects of a category in this paper, it will be this one.

Examples 2.3. (1) For k1, k2 ≥ 1 we have Tk1+k2 = Nk1+k2 = Nk1 × Nk2 = Tk1 × Tk2 .
(2) For k1, k2 ≥ 1 we have ∆k1+k2

∼= ∆k1 ×∆k2 . One checks that the map (m,n) 7→
((π1(m), π1(n)), (π2(m), π2(n))) gives the desired isomorphism of k-graphs.

It is sometimes useful to consider morphisms between higher-rank graphs which do not
preserve degree. The following definition is from [27, §2].

Definition 2.4. Let (Λ, d) be a k-graph and (Γ, d′) be an `-graph. A functor ψ : Λ→ Γ
is called a quasimorphism if there is a homomorphism π : Nk → N` such that for all λ ∈ Λ
we have π(d(λ)) = d′(ψ(λ)).
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Example 2.5. For i = 1, 2, let (Λi, di) be a ki-graph. Let Λ1 ×Λ2 the associated cartesian
product (k1 + k2)-graph. Since every element λ ∈ Λ1 × Λ2 is of the form λ = (λ1, λ2)
where λ1 ∈ Λ1 and λ2 ∈ Λ2, for i = 1, 2 there is a natural functor ψi : Λ1×Λ2 → Λi given
by (λ1, λ2) 7→ λi; note that ψi is a quasimorphism with di ◦ ψi = πi ◦ (d1 × d2).

Definition 2.6. Let f : Nk → Nl be a homomorphism and let Γ be an l-graph. The
pullback f ∗Γ is the k-graph {(γ, n) ∈ Γ × Nk : f(n) = d(γ)} with degree map d(γ, n) =
n (see [25, Definition 1.9]). The structure maps are given by r(γ, n) = (r(γ), 0) and
s(γ, n) = (s(γ), 0). If s(λ) = r(µ) in Γ then (λ, n) and (µ,m) are composable in f ∗Γ, and

(2.2) (λ, n)(µ,m) = (λµ,m+ n).

All of the above is standard notation for k-graphs. In the remainder of this section we
introduce some new notation related to k-graphs as a preliminary to the definition and
basic properties of homology for k-graphs in Section 3

Definition 2.7. Let Λ be a k-graph where k ≥ 1. For λ ∈ Λ and m ∈ {1,−1}, we define

s(λ,m) :=

{
s(λ) if m = 1

r(λ) if m = −1
and r(λ,m) := s(λ,−m).

An undirected path is a pair (g,m) where g = (g1, . . . , gn) is a sequence of edges in Λ
and m = (m1, . . . ,mn) is a sequence of orientations, mi ∈ {1,−1} such that s(gi,mi) =
r(gi+1,mi+1) for all i. If (g,m) is an undirected path, we define s(g,m) := s(gn,mn) and
r(g,m) := r(g1,m1). If r(g,m) = s(g,m), then we say that the undirected path (g,m) is
closed.

A closed undirected path (g,m) is called simple if s(gi,mi) 6= s(gj,mj) for i 6= j.

Definition 2.8. (cf. [33, §3]) A k-graph Λ is connected if the equivalence relation on Λ0

generated by {(r(λ), s(λ)) : λ ∈ Λ} is Λ0 × Λ0.

Remark 2.9. A k-graph Λ is connected if and only if for all u, v ∈ Λ0 there is an undirected
path with source u and range v.

For each equivalence class X ⊆ Λ0 from Definition 2.8, the k-graph XΛX is a connected
component of Λ. Each k-graph is the disjoint union of its connected components.

For k ≥ 0 define 1k :=
∑k

i=1 ei ∈ Nk. By convention 10 = 0 ∈ N0.

Definition 2.10. Let Λ be a k-graph. For r ≥ 0 let

Qr(Λ) = {λ ∈ Λ : d(λ) ≤ 1k, |λ| = r}.
Let Q(Λ) = ∪r≥0Qr(Λ).

We have Q0(Λ) = Λ0, and Qr(Λ) = ∅ if r > k. Let 0 < r ≤ k. The set Qr(Λ) consists of
the morphisms in Λ which may be expressed as the composition of a sequence of r edges
with distinct degrees. We regard elements of Qr(Λ) as unit r-cubes in the sense that each
one gives rise to a commuting diagram of edges in Λ shaped like an r-cube. In particular,
when r ≥ 1, each element of Qr(Λ) has 2r faces in Qr−1(Λ) defined as follows.

Definition 2.11. Fix λ ∈ Qr(Λ) and write d(λ) = ei1 + · · ·+ eir where i1 < · · · < ir. For
1 ≤ j ≤ r, define F 0

j (λ) and F 1
j (λ) to be the unique elements of Qr−1(Λ) such that there

exist α, β ∈ Λeij satisfying
F 0
j (λ)β = λ = αF 1

j (λ).
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Remark 2.12. Equivalently, F 0
j (λ) = λ(0, d(λ)− eij) and F 1

j (λ) = λ(eij , d(λ)). If 1 ≤ i <

j ≤ r, then F `
i ◦ Fm

j = Fm
j−1 ◦ F `

i for `,m ∈ {0, 1}.
Notation 2.13. Let X be a set. We write ZX for the free abelian group generated by
X (so Z∅ = {0}).
Remark 2.14. Let X and Y be sets. Then every function f : X → Y extends uniquely to a
homomorphism f : ZX → ZY . In particular, the inclusion maps induce an isomorphism
Z(X t Y ) ∼= ZX ⊕ ZY . Moreover there is an isomorphism Z(X × Y ) ∼= ZX ⊗ ZY
determined by (x, y) 7→ x⊗ y.

3. The homology of a k-graph

In this section we define the homology of a k-graph, compute some basic examples and
provide descriptions of the first two homology groups. Throughout this paper, we use r
(for rank) for the indexing subscript in complexes and in homology groups because n is
more commonly used for a generic element of Nk.

Definitions 3.1. For r ∈ N let Cr(Λ) = ZQr(Λ). For r ≥ 1, define ∂r : Cr(Λ)→ Cr−1(Λ)
to be the unique homomorphism such that

(3.1) ∂r(λ) =
1∑
`=0

r∑
i=1

(−1)i+`F `
i (λ) for all λ ∈ Qr(Λ).

We write ∂0 for the zero homomorphism C0(Λ)→ {0}.
Remarks 3.2. For f ∈ Q1(Λ) we have F 1

1 (f) = s(f) and F 0
1 (f) = r(f) and so ∂1(f) =

s(f)− r(f).
Fix λ ∈ Q2(Λ). Write d(λ) = ej1 + ej2 with j1 < j2. Factorise λ = f1g1 = g2f2

where d(fi) = ej1 and d(gi) = ej2 for i = 1, 2. Then F 0
2 (λ) = λ(0, ej1) = f1, F 1

2 (λ) =
λ(ej2 , ej1 + ej2) = f2, F 0

1 (λ) = λ(0, ej2) = g2 and F 1
1 (λ) = λ(ej1 , ej1 + ej2) = g1. Hence

(3.2) ∂2(λ) = g1 + f1 − f2 − g2.

For r ≥ 0, ∂r is a homomorphism and ∂r ◦ ∂r+1 = 0 by Remark 2.12. Hence we have
the following.

Lemma 3.3. Let Λ be a k-graph, then (C∗(Λ), ∂∗) is a chain complex.

We define the homology of Λ to be the homology of the chain complex C∗(Λ).

Definition 3.4. For r ∈ N define Hr(Λ) = ker(∂r)/ Im ∂r+1. We call Hr(Λ) the rth

homology group of Λ and we call H∗(Λ) the homology of Λ.

Lemma 3.5. Fix n ∈ N. If ψ : Λ1 → Λ2 is a k-graph morphism, then there is a
homomorphism ψ∗ : Hr(Λ1)→ Hr(Λ2) determined by ψ∗([λ]) = [ψ(λ)] for all λ ∈ Qr(Λ).
Moreover, the assignments Λ 7→ Hr(Λ) and ψ 7→ ψ∗ comprise a covariant functor from
the category of k-graphs with k-graph morphisms to the category of abelian groups with
homomorphisms.

Proof. For λ ∈ Qr(Λ1) we have ψ(λ) ∈ Qr(Λ2) as ψ is degree preserving. Since it preserves
factorisations, ψ intertwines the face maps on Qr(Λ1) and Qr(Λ2), so it intertwines the
boundary maps ∂r and therefore defines a homomorphism ψ∗ : Hr(Λ1)→ Hr(Λ2).

For the second assertion of the Lemma, we just have to check that ψ 7→ ψ∗ preserves
composition. This follows immediately from the definition. �
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Remark 3.6. For a k-graph Λ and r > k, we have Qr(Λ) = ∅, so Cr(Λ) and Hr(Λ) are
trivial.

Remark 3.7. Let Λi be k-graphs for i = 1, 2. Then the chain complex C∗(Λ1 t Λ2)
decomposes as the direct sum of the complexes C∗(Λ1) and C∗(Λ2). Thus the canonical
inclusions of Λ1,Λ2 into Λ1 tΛ2 induce an isomorphism H∗(Λ1)⊕H∗(Λ2) ∼= H∗(Λ1 tΛ2).
Indeed, this isomorphism holds for countable disjoint unions of k-graphs.

Remark 3.8. Let Λ be a k-graph and let Λop be the opposite category, which is a k-
graph under the same degree map. We write λop for an element λ ∈ Λ when regarded
as an element of Λop. For each r, the assignment λ 7→ (−1)rλop induces an isomorphism
φr : Cr(Λ) → Cr(Λ

op). Using that F l
i (λ

op) = F 1−l
i (λ)op for all λ ∈ Qr(Λ), a calculation

shows that ∂r+1 ◦ φr+1 = φr ◦ ∂r+1 for all r. So φ∗ is an isomorphism of complexes and
hence induces an isomorphism H∗(Λ) ∼= H∗(Λ

op).

Examples 3.9. (1) Let T0 be the 0-graph of Examples 2.2 (1). Then Q0(T0) = {0} and
Qr(T0) = ∅ for all r ≥ 1. Hence C0(T0) = Z{0} and Cr(T0) = {0} for all r ≥ 1.
Since ∂r = 0 for all r ≥ 0, we have H0(T0) = Z{0} ∼= Z and Hr(T0) = {0} for
r ≥ 1.

(2) More generally, for k ≥ 1, we have Q0(Tk) = {0}, Qr(Tk) = ∅ for all r > k and

Qr(Tk) = {ei1 + · · ·+ eir | 1 ≤ i1 < · · · < ir ≤ k}

for 1 ≤ r ≤ k. Thus |Qr(Tk)| =
(
k
r

)
for 0 ≤ r ≤ k.

For 1 ≤ j ≤ r ≤ k, we have F 0
j = F 1

j , so ∂r = 0. Hence

Hr(Tk) = ZQr(Tk) ∼= Z(kr) for 0 ≤ r ≤ k,

and Hr(Tk) = {0} for r > k. In particular Tk has the same homology as the
k-torus Tk.

Definition 3.10. Let Λ be a k-graph and let (g,m) be an undirected path in Λ (see
Definition 2.7). Then

h =
n∑
i=1

migi ∈ C1(Λ)

is called the trail associated to (g,m). If (g,m) is closed, then h is said to be a closed
trail. If in addition (g,m) is simple, then h is called a simple closed trail.

Remark 3.11. Let (g,m) be an undirected path in Λ with source u and range v. A
straightforward computation shows that ∂1(h) = u− v where h is the trail associated to
(g,m). Hence, if h is a closed trail then ∂1(h) = 0. If h is a closed trail and a ∈ Z is
nonzero then ah is also a closed trail.

Proposition 3.12. Let Λ be a connected k-graph, then H0(Λ) ∼= Z.

Proof. Define a homomorphism θ : C0(Λ) → Z by θ(v) = 1 for all v ∈ Λ0. It suffices to
show that ker(θ) ⊂ Im(∂1), as the reverse inclusion is clear.

Fix distinct u, v ∈ Λ0. Since Λ is connected there is an undirected path (g,m) from u to
v. By Remark 3.11 ∂1(h) = u− v where h is the trail associated to (g,m). In particular,
u− v ∈ Im(∂1).
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Let a =
∑n

i=1mivi ∈ ker(θ) with distinct vi and mi 6= 0 for all i. We prove by induction
on n ≥ 2 that

∑n
i=1mivi ∈ Im(∂1). When n = 2 we must havem1+m2 = 0. The preceding

paragraph yields a trail h such that ∂1(h) = v1 − v2, and then a = ∂1(m1h) ∈ Im(∂1).
Fix n ≥ 3 and suppose the result holds for all ` with n > ` ≥ 2. Relabeling if necessary,

we may assume that m1 and m2 have opposite sign, and |m1| ≤ |m2|. We give a proof
for the case m1 > 0, the case m1 < 0 being similar. Since Λ is connected there is an
undirected path (g1,m1) from v1 to v2. Let h1 ∈ C1(Λ) be the associated trail. Then
∂1(h1) = v1 − v2 and

a1 = a− ∂1(m1h1) = (m2 +m1)v2 +
n∑
i=3

mivi.

By the inductive hypothesis a1 ∈ Im(∂1) and so a = a1 + ∂(m1g1) ∈ Im(∂1). �

Combining Proposition 3.12, Remark 3.7 and Remark 2.9 gives the following.

Corollary 3.13. Let Λ be a k-graph with p connected components (where p ∈ {1, 2, . . . }∪
{∞}). Then H0(Λ) ∼= Zp. In particular Λ is connected if and only if H0(Λ) ∼= Z.

Example 3.14. Since ∆1 is connected we have H0(∆1) ∼= Z by Proposition 3.12. We claim
that Hr(∆1) = 0 for all r ≥ 1. By Remark 3.6 it suffices to check that H1(∆1) = {0}. To
see this fix f ∈ C1(∆1) \ {0}. Then we may express f =

∑m
i=` ai(i, i + 1), where ai ∈ Z

and am 6= 0. Then

∂1(f) =
m∑
i=`

ai ((i+ 1, i+ 1)− (i, i))

= am(m+ 1,m+ 1)− a`(`, `) +
m∑

i=`+1

(ai−1 − ai)(i, i).

Since am 6= 0 it follows that ∂1(f) 6= 0. So ∂1 is injective and hence H1(∆1) = ker(∂1) is
trivial.

Proposition 3.15. Let Λ be a k-graph. For each a ∈ ker ∂1, there exist simple closed
trails h1, . . . , hn in C1(Λ) such that a =

∑n
i=1mihi.

Proof. For a =
∑n

i=1 aifi ∈ ker ∂1 where the fi are distinct elements of Q1(Λ), set N(a) :=∑n
i=1 |ai|. We proceed by induction on N(a). If N(a) = 0, the result is trivial. Fix N > 0

and suppose as an inductive hypothesis that whenever N(a) < N , there are simple closed
trails hi and integers mi such that a =

∑n
i=1mihi. Fix a with N(a) = N . It suffices to

show that there is a simple closed trail h ∈ C1(Λ) such that N(a− h) < N(a).
Recall from Definition 2.7 that if p ∈ {1,−1} and f ∈ Q1(Λ), then s(f, p) means s(f)

if p = 1 and r(f) if p = −1; and r(f, p) = s(f,−p).
Express a =

∑n
i=1 aifi where the fi are distinct elements of Q1(Λ), and each ai 6= 0.

Let i1 := 1, let p1 := sign(a1). If s(f1) = r(f1), then h := p1f1 has the desired property.
Otherwise, let v0 = r(f1, p1) and v1 = s(f1, p1). Since the coefficient of v1 in ∂1(a) is
zero, there must exist i2 such that the coefficient of v1 in ∂1(ai2fi2) is nonzero with the
opposite sign to that in ∂1(p1fi1); let p2 := sign(ai2) and let v2 = s(fi2 , p2). Observe
that r(fi2 , p2) = s(fi1 , p1). We may continue iteratively, as long as the vi are all distinct,
to chose an index ij such that pj := sign(aij) has the property that the coefficient of
vj−1 in ∂1(pjfij) has the opposite sign to that in ∂1(pj−1fij−1

) for each j. We then set
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vj := s(fij , pj), and observe that r(fij , pj) = vj−1. Since there are only finitely many
nonzero coefficients in a, this process must terminate: there is a first l such that vl ∈
{v0, v1, . . . , vl−1}; say vl = vq where q < l. Then h :=

∑l
j=q+1 pjfij is a simple closed trail.

Since pj = sign(aij) for each j, we have N(a−h) = N(a)−(l−q) < N(a) as required. �

4. Fundamental results

In this section we prove versions of a number of standard results in homology theory
which suggest that our notion of homology for k-graphs is a reasonable one. In Appen-
dix A, we will show that each k-graph determines in a fairly natural way a cubical set, and
that our homology then agrees with that of Grandis [14]. So a number of results in this
section could be recovered from Grandis’ work. However, it seems worthwhile to present
self-contained proofs which are consistent with the notation and conventions associated
with k-graphs.

We begin with a version of the Künneth formula for our homology (see Theorem 4.3). In
order to do this we must show how our chain complexes behave with respect to cartesian
product of k-graphs.

Recall from Example 2.5 that given a cartesian product graph Λ1×Λ2 there are quasi-
morphisms ψi : Λ1 × Λ2 → Λi consistent with the projections πi : Nk1+k2 → Nki .

Lemma 4.1. Let (Λi, di) be a ki-graph for i = 1, 2 and Λ1 × Λ2 the associated cartesian
product (k1 + k2)-graph. Then for r ≥ 0, we have Qr(Λ) =

⊔
r1+r2=rQr1(Λ1) × Qr2(Λ2).

Hence there is an isomorphism

(4.1) Ψr : Cr(Λ1 × Λ2) ∼=
⊕

r1+r2=r

Cr1(Λ1)⊗ Cr2(Λ2)

given by Ψr(λ1, λ2) = λ1 ⊗ λ2.

Proof. For the first assertion, just note that (d1 × d2)(λ1, λ2) ≤ 1k1+k2 if and only if
di(λi) ≤ 1ki for i = 1, 2. So

Qr(Λ1 × Λ2) = {(λ1, λ2) : (d1 × d2)(λ1, λ2) ≤ 1k1+k2 , |λ1|+ |λ2| = r}

=
⊔

r1+r2=r

{(λ1, λ2) : di(λi) ≤ 1ki , |λi| = ri for i = 1, 2}

=
⊔

r1+r2=r

Qr1(Λ1)×Qr2(Λ2).

The second assertion follows from Remark 2.14. �

Recall from [29, V.9] that if K and L are chain complexes with boundary maps ∂Kr :
Kr → Kr−1 and ∂Lr : Lr → Lr−1, then the tensor complex K ⊗ L is given by

(K ⊗ L)r =
⊕

r1+r2=r

Kr1 ⊗ Lr2 ,

with boundary maps

(4.2) ∂K⊗Lr1+r2
(k ⊗ l) := ∂Kr1 (k)⊗ l + (−1)r1k ⊗ ∂Lr2(l) for all k ∈ Kr1 and l ∈ Lr2 .

The following is an analog of [14, Theorem 2.7].

Proposition 4.2. Let Λi be a ki-graph for i = 1, 2. The isomorphisms Ψr of Lemma 4.1
induce an isomorphism of complexes Ψ : C∗(Λ1 × Λ2)→ C∗(Λ1)⊗ C∗(Λ2).
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Proof. Fix r1, r2 such that 0 ≤ ri ≤ ki for i = 1, 2 and set r = r1 + r2. Let λi ∈ Qri(Λi)
(i = 1, 2). Then for each 0 ≤ j ≤ k1 + k2 and ` ∈ {0, 1},

F `
j (λ1, λ2) =

{
(F `

j (λ1), λ2) if 1 ≤ j ≤ r1

(λ1, F
`
j−r1(λ2)) if r1 + 1 ≤ j ≤ r1 + r2.

Hence by (3.1) we may calculate:

∂r(λ1, λ2) =
1∑
`=0

r∑
j=1

(−1)`+jF `
j (λ1, λ2)

=
1∑
`=0

( r1∑
j=1

(−1)`+j(F `
j (λ1), λ2) +

r1+r2∑
j=r1+1

(−1)`+j(λ1, F
`
j−r1(λ2))

)
=

1∑
`=0

r1∑
j=1

(−1)`+j(F `
j (λ1), λ2) +

1∑
`=0

r2∑
h=1

(−1)`+h+r1(λ1, F
`
h(λ2))

= (∂r1(λ1), λ2) + (−1)r1(λ1, ∂r2(λ2)).(4.3)

It remains to show that for all r,

∂r(Ψr(λ1, λ2)) = Ψr−1(∂r(λ1, λ2)).

By definition of the boundary map ∂r on Cr1(Λ1)⊗ Cr2(Λ2) (see (4.2)), we have

∂r(Ψr(λ1, λ2)) = ∂r(λ1 ⊗ λ2)

= ∂r1(λ1)⊗ λ2 + (−1)r1λ1 ⊗ ∂r2(λ2)

= Ψr−1(∂r1(λ1), λ2) + (−1)r1(λ1, ∂r2(λ2)),

and this is equal to Ψr−1(∂r(λ1, λ2)) by (4.3). �

We may now state a Künneth formula for our homology. The map α was considered in
[14, Theorem 2.7].

Theorem 4.3. Let Λi be a ki-graph for i = 1, 2. Then there is a split exact sequence

0→
⊕

r1+r2=r

Hr1(Λ1)⊗Hr2(Λ2)
α−→ Hr(Λ1 × Λ2)

β−→
⊕

r1+r2=r−1

Tor
(
Hr1(Λ1), Hr2(Λ2)

)
→ 0.

The homomorphisms α and β are natural with respect to maps induced by k-graph mor-
phisms, but the splitting is not natural.

Proof. The result follows from Proposition 4.2 and [29, Theorem V.10.4] using the fact
that Cr(Λ) is torsion free for each r. �

Corollary 4.4. Let Λi be a ki-graph for i = 1, 2. Suppose that for some i the groups
Hr(Λi) are all torsion-free. Then the map α in Theorem 4.3 is an isomorphism, so

Hr(Λ1 × Λ2) ∼=
⊕

r1+r2=r

Hr1(Λ1)⊗Hr2(Λ2).

Example 4.5. For k ≥ 2, we have Tk ∼= T1 × · · · × T1 by Examples 2.3 (1). We claim that
for 0 ≤ r ≤ k we have

Hr(Tk) ∼= Z(kr).
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For k = 0, 1 this follows by Examples 3.9. The general case follows by induction on k
using Corollary 4.4.

Definition 4.6. We say that a k-graph Λ is acyclic if H0(Λ) ∼= Z and Hr(Λ) = 0 for all
r ≥ 1.

Remark 4.7. Let Λi be an acyclic ki-graph for i = 1, 2. Then by Corollary 4.4 it follows
that Λ1 × Λ2 is an acyclic k1 + k2-graph.

Examples 4.8. (1) Note that by Examples 2.3 (2) we have ∆k
∼= ∆1 × · · · × ∆1 for

k ≥ 2. By Example 3.14 ∆1 is acyclic, and so by Remark 4.7 it follows that ∆k is
acyclic for all k. Indeed for k ≥ 1 the k-graph ∆k has the same homology as Rk.

(2) Let Λ be a connected 1-graph which is a tree. By Proposition 3.12 we haveH0(Λ) ∼=
Z. Since Λ contains no closed undirected paths, C1(Λ) has no closed trails. Thus
by Proposition 3.15 ker(∂1) = 0 and hence H1(Λ) = 0. Since Hr(Λ) = 0 for r > 1,
it follows that Λ is acyclic.

The proof of the next result follows the argument used in [4, II.4.1]. This result may
also be deduced from [14, Theorem 3.3] using the identification of our homology with that
of the corresponding cubical set established in Theorem A.9.

Theorem 4.9. Suppose that Λ is an acyclic k-graph. If G is a discrete group acting freely
on Λ, then H∗(Λ/G) ∼= H∗(G,Z).

Proof. If M is a G-module, then we write DM for the submodule of M generated by the
elements {gm −m : m ∈ M, g ∈ G}. We write MG for M/DM . Note that M 7→ MG is
a functor from the category of G-modules to the category of abelian groups (so it maps
a complex of G-modules to a complex of abelian groups). If G acts on a set X then ZX
may be regarded as a G-module and ZXG

∼= Z(X/G) (see [4, § II.2]).
Since G acts freely on Λ, it acts freely on each Qr(Λ). Thus Cr(Λ) = ZQr(Λ) is a free

G-module. We have

ZQr(Λ)G ∼= ZQr(Λ/G).

Moreover, this isomorphism is compatible with the boundary maps. So if C∗(Λ)G denotes
the complex obtained from C∗(Λ) by applying the functor M 7→ MG, then C∗(Λ)G ∼=
C∗(Λ/G). Since Λ is acyclic, the sequence

· · · ∂3→ C2(Λ)
∂2→ C1(Λ)

∂1→ C0(Λ)
ε→ Z→ 0

is a resolution of Z by free G-modules. Since the complex C∗(Λ)G is isomorphic to the
complex C∗(Λ/G), we have

H∗(C∗(Λ)G) ∼= H∗(C∗(Λ/G)) = H∗(Λ/G).

Therefore, H∗(G,Z) ∼= H∗(Λ/G). �

Recall that the fundamental group π1(Λ) of a connected 1-graph Λ is free (see for
example [42, §2.1.8] or [24, §4]) and the universal cover T is a tree. Thus Λ may be
realised as the quotient of T by the action of π1(Λ); moreover, if Λ has finitely many
vertices and edges, then π1(Λ) ∼= Fp, where Fp is the free group on p generators and
p = |Λ1| − |Λ0| + 1 (see [39, §I.3.3, Theorem 4]). Since T is acyclic, we obtain the
following result.
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Corollary 4.10. Let Λ be a connected 1-graph. Then H1(Λ) ∼= H1(π1(Λ),Z). In partic-
ular if Λ has finitely many vertices and edges, then π1(Λ) ∼= Fp where p = |Λ1| − |Λ0|+ 1
and so

H1(Λ) ∼= H1(Fp,Z) ∼= Zp.

Examples 4.11. (1) Recall from Examples 2.2 (2) that Bn is the path category of a
directed graph with a single vertex and n edges, regarded as a 1-graph. The
universal cover of Bn, which we denote An, is the skew-product Bn×c Fn, and can
be identified with the Cayley graph of Fn, the free group on n generators. By [25,
Remark 5.6] Fn acts freely on An with An/Fn ∼= Bn. By Corollary 4.10 we have
H1(Bn) ∼= Zn. Hence Bn has the same homology as the wedge of n circles.

(2) Let H be a subgroup of Zk. Then as in [26, §6.4] H acts freely on ∆k. Since ∆k

is acyclic, by Theorem 4.9 we have H∗(∆k/H) ∼= H∗(H,Z). If H ∼= Zq, then for
0 ≤ r ≤ k we have (cf. Example 4.5)

Hr(∆k/H) ∼= Z( qr ).

Hence ∆k/H has the same homology as the q-torus. If H has finite index then
q = k and the quotient graph ∆k/H may be viewed as yet another k-graph analog
of the k-torus (note ∆k/H = Tk when H = Zk).

(3) The following example indicates that Theorem 4.9 is in practise less useful than it
might appear because it is difficult to recognise acyclic k-graphs (short of explicitly
computing their homology). In particular one might expect that a pullback of an
acyclic k-graph by a full-rank endomorphism of Nk is itself acyclic, but this is not
so.

Let Λ be the 2-graph with Λ0 = {v}, Λe1 = {a1, a2}, Λe2 = {b1, b2}, and
factorisation property determined by aibj = biaj for i, j = 1, 2. Recall that we
denote the generators of F2 by h1 and h2. There is a functor σ : Λ → F2 × Z
determined by σ(ai) = (hi, 0) and σ(bi) = (hi, 1). Let Γ := Λ ×σ (F2 × Z), and
observe that by [25, Remark 5.6] F2 × Z acts freely on Γ with quotient Λ.

Let A2 = B2×cF2 as in (1) above. Define g : N2 → N2 by g(m,n) := (m+n, n).
Tedious calculations show that Γ is isomorphic to the pullback g∗(A2 ×∆1)1.

We claim that Γ is not acyclic. Suppose that it is. Then Theorem 4.9 implies
that H∗(Λ) ∼= H∗(F2 × Z). By the Künneth theorem for group homology, since
both Hr(F2) and Hr(Z) are trivial for r ≥ 2,

H2(F2 × Z) = H1(F2)⊗H1(Z) ∼= Z2.

A straightforward computation shows that a1b1, a2b2 and a1b2 + a2b1 all belong to
ker(∂2) = H2(Λ), so the latter has rank at least three, giving a contradiction.

So Γ is not acyclic, despite being a pull-back of the acyclic graph A2 ×∆1 (see
Remark 4.7) by the full-rank endomorphism g.

We now turn our attention to exact sequences of homology groups associated to au-
tomorphisms of k-graphs. Recall from [12] that if Λ is a k-graph and α is an automor-
phism of Λ, then there is a (k + 1)-graph Λ ×α Z with morphisms Λ × N, range and
source maps given by r(λ, n) = (r(λ), 0), s(λ, n) = (α−n(s(λ)), 0), degree map given

1This is not meant to be obvious. After unraveling the definitions of Γ and of g∗(A2 ×∆1), one can
check that the formulas (ai, (h, n)) 7→

(
((fi, h), (n, n)), (1, 0)

)
and (bi, (h, n)) 7→

(
((fi, h), (n, n+1)), (0, 1)

)
for i = 1, 2 determine the desired isomorphism.
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by d(λ, n) = (d(λ), n) and composition given by (λ,m)(µ, n) := (λαm(µ),m + n). In
particular (Λ×α Z)0 = Λ0 × {0}.

We may describe the cubes of Λ×α Z in terms of those of Λ as follows: Q0(Λ×α Z) =
Q0(Λ) × {0} and for 0 ≤ r ≤ k an element of Qr+1(Λ ×α Z) is of the form (λ, 0) where
λ ∈ Qr+1(Λ) or (λ, 1) where λ ∈ Qr(Λ), so

(4.4) Qr+1(Λ×α Z) = (Qr+1(Λ)× {0}) t (Qr(Λ)× {1}).

Given an element a =
∑
aλλ ∈ Cr(Λ), we shall somewhat inaccurately write (a, 0) :=∑

aλ(λ, 0) and (a, 1) :=
∑
aλ(λ, 1) for the corresponding elements of Cr(Λ ×α Z) and

Cr+1(Λ×α Z). With this notation, the boundary map on Cr+1(Λ×α Z) is given by

(4.5)
∂r+1(λ, 0) = (∂r+1(λ), 0) and
∂r+1(µ, 1) = (−1)r

(
(α−1(µ), 0)− (µ, 0)

)
+ (∂r(µ), 1).

We will deduce our long exact sequence for the homology of Λ×αZ from the long exact
sequence associated to a mapping-cone complex arising from the chain map α−1 − 1 (see
[29, Proposition II.4.3]). So we recall the definition of the mapping cone complex. Given
a chain map f : A∗ → B∗, define a complex M∗ = M(f)∗ by Mr := Ar−1 ⊕ Br (with the
convention that A−1 = {0}) with boundary map

(4.6) ∂r(a, b) := (−∂r−1(a), ∂r(b) + f(a)).

If α is an automorphism of a k-graph Λ, then α−1 maps cubes to cubes and intertwines
boundary maps, and so induces a chain map α−1 : C∗(Λ)→ C∗(Λ). Hence α−1− 1 is also
a chain map from C∗(Λ) to itself.

Lemma 4.12. Let Λ be a k-graph and let α be an automorphism of Λ. Then there is an
isomorphism of chain complexes ψ : C∗(Λ×α Z)→M(α−1 − 1)∗ such that

ψ(λ, 0) = (0, λ) and ψ(µ, 1) = ((−1)rµ, 0)

for all (λ, 0), (µ, 1) ∈ Qr+1(Λ ×α Z). Hence, ψ∗ : H∗(Λ ×α Z) → H∗(M(α−1 − 1)∗) is an
isomorphism.

Proof. Write M∗ := M(α−1 − 1)∗ and C∗ := C∗(Λ ×α Z). It is clear that ψ determines
isomorphisms of groups Cr ∼= Mr. So to see that ψ is an isomorphism of complexes, it
suffices to show that it intertwines the boundary maps on generators. We consider cubes
of the form (λ, 0) and those of the form (µ, 1) separately. Fix λ ∈ Qr+1(Λ). We have
∂r+1(ψ(λ, 0)) = ∂r+1(0, λ) = (0, ∂r+1(λ)) by (4.6), and ψ(∂r+1(λ, 0)) = ψ(∂r+1(λ), 0) =
(0, ∂r+1(λ)) by (4.5). So ∂r+1(ψ(λ, 0)) = ψ(∂r+1(λ, 0)) as required.

Now fix µ ∈ Qr(Λ). Then we have

ψ(∂r+1(µ, 1)) = ψ
(
(−1)r

(
(α−1(µ), 0)− (µ, 0)

)
+ (∂r(µ), 1)

)
= (−1)r

(
ψ(α−1(µ), 0)− ψ(µ, 0)

)
+ ψ(∂r(µ), 1)

= (−1)r(0, (α−1 − 1)(µ)) + (−1)r−1(∂r(µ), 0)

= (−1)r(−∂r(µ), (α−1 − 1)(µ)).
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On the other hand,

∂r+1ψ((µ, 1)) = (−1)r∂r+1(µ, 0)

= (−1)r(−∂r(µ), ∂r+1(0) + (α−1 − 1)(µ))

= (−1)r(−∂r(µ), (α−1 − 1)(µ)). �

Now recall from [29, Proposition 4.3], that a chain map f : A∗ → B∗ determines a long
exact sequence

(4.7) · · · → Hr(B∗)
ι∗−→ Hr(M(f)∗)

π∗−→ Hr−1(A∗)
f∗−→ Hr−1(B∗)→ · · ·

where ι∗ : Hr(B∗) → Hr(M(f)∗) is induced by the inclusion map ι : Br → M(f)r, and
π∗ : Hr(M(f)∗)→ Hr−1(A∗) is induced by the projection π : M(f)r → Ar−1.

The following result gives an exact sequence which may be regarded as an analog of the
Pimsner-Voiculescu sequence for crossed products of C∗-algebras (cf. [35, Theorem 2.4],
[3, Theorem 10.2.1]).

Theorem 4.13. Let Λ be a k-graph, and let α be an automorphism of Λ. Then there is
an exact sequence

0 −→ Hk+1(Λ×α Z)
π∗−→ Hk(Λ)

1−α∗−−−→ Hk(Λ)
ι∗−→ Hk(Λ×α Z) −→ · · ·

· · · −→ H1(Λ×α Z)
π∗−→ H0(Λ)

1−α∗−−−→ H0(Λ)
ι∗−→ H0(Λ×α Z) −→ 0.

Proof. The long exact sequence (4.7) applied with f = α−1−1 together with Lemma 4.12
(and identifying H∗(Λ×α Z) ∼= H∗(M(α−1 − 1)∗)) gives a long exact sequence

0 −→ Hk+1(Λ×α Z)
π∗−→ Hk(Λ)

α−1
∗ −1−−−−→ Hk(Λ)

ι∗−→ Hk(Λ×α Z) −→ · · ·

· · · −→ H1(Λ×α Z)
π∗−→ H0(Λ)

α−1
∗ −1−−−−→ H0(Λ)

ι∗−→ H0(Λ×α Z) −→ 0.

Since α∗ is an automorphism of Hr(Λ) which commutes with α−1
∗ − 1, both ker(α−1

∗ − 1)
and Im(α−1

∗ − 1) are α∗-invariant. Therefore

ker(α−1
∗ − 1) = ker(α∗(α

−1
∗ − 1)) = ker(1− α∗)

and similarly, Im(α−1
∗ − 1) = Im(1− α∗). �

Remark 4.14. Theorem 4.13 may also be proved using the topological realizations, in-
troduced in [21] (see also Section 6), of Λ and Λ ×α Z. To see how, recall from [21,
Lemma 2.23] that α induces a homeomorphism α̃ of the topological realisation XΛ of
Λ, and that XΛ×αZ is homeomorphic to the mapping torus M(α̃). Combining this with
Theorem 6.3 and the long exact sequence of [17, Example 2.48] yields the result.

5. Examples

In this section we present some examples. We describe them using skeletons, so we
first indicate what this means. Our examples are all 2-graphs (since there are already a
number of interesting examples in this case), so we restrict ourselves to a discussion of
skeletons for 2-graphs.

A 2-coloured graph is a directed graph E together with a map c : E1 → {1, 2}. A
complete collection of squares in E is a collection of relations of the form ef ∼ f ′e′ where
ef, f ′e′ ∈ E2 with c(e) = c(e′) = 1 and c(f) = c(f ′) = 2 such that each bi-coloured path
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of length two appears in exactly one such relation2. It follows from [25, Section 6] (see
also [18, Theorems 4.4 and 4.5]) that each pair consisting of a 2-coloured graph and a
complete collection of pairs uniquely determines a 2-graph, and also that each 2-graph
arises from such a pair (EΛ, CΛ). It is standard to refer to the equalities ef = f ′e′ in Λ
determined by the squares ef ∼ f ′e′ in C as the factorisation rules. We refer to E as the
skeleton of Λ.

In our diagrams, edges of colour 1 are blue and solid, and edges of colour 2 are red and
dashed.

Our first example is a 2-graph whose first homology group contains torsion. Combined
with Example 5.2, it also demonstrates that the homology of a k-graph depends on the
factorisation rules and not just on the skeleton.

Example 5.1. Fix n > 1 and consider the 1-graph Λ with skeleton

u v

f0

fn−1

...

Define α ∈ Aut(Λ) by α(fi) = fi+1, where addition is modulo n (so α fixes vertices).
Then Λ×α Z (see page 12) is the 2-graph with skeleton

u v

(f0, 0)

(fn−1, 0)

...(u, 1) (v, 1)

and factorisation rules (fi, 0)(v, 1) = (u, 1)(fi+1, 0) for i = 0, . . . , n− 1, where addition is
modulo n.

We claim that

H0(Λ×α Z) ∼= Z, H1(Λ×α Z) ∼= Z⊕ Z/nZ, and H2(Λ×α Z) = {0}.

By Proposition 3.12 we have H0(Λ ×α Z) ∼= Z and H0(Λ) ∼= Z. Since α fixes vertices it
follows that α∗ : H0(Λ)→ H0(Λ) is the identity map. Hence ker(1− α∗) = H0(Λ) ∼= Z.

We next calculate H1(Λ). Since C2(Λ) = {0}, we have H1(Λ) = ker(∂1). Since ∂1(fi) =
u− v for all 0 ≤ i ≤ n− 1, and since C1(Λ) = Z{f0, . . . , fn−1}, we have

(5.1) {fi − fi+1 : 0 ≤ i ≤ n− 2} is a basis for the Z-module H1(Λ).

Let bi := fi − fi+1 for 0 ≤ i ≤ n− 2 then α∗(bi) = bi+1 for 0 ≤ i < n− 2, and

α∗(bn−2) = fn−1 − f0 = −
n−2∑
i=0

bi.

2Strictly speaking, in [18], a complete collection of squares is defined to be a collection C of coloured-
graph morphisms from model coloured graphs Ek,ei+ej into Λ, and the relation ∼ is defined by ef ∼ f ′e′

if and only if the two paths traverse a common element of C. But we can recover the collection of
coloured-graph morphisms as in [18] from the relation ∼, so the two formalisms are equivalent.
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Hence, regarded as an endomorphism of Zn−1, the map 1 − α∗ is implemented by the
(n− 1)× (n− 1) matrix 

1 0 0 · · · 0 1
−1 1 0 · · · 0 1

0 −1 1 · · · 0 1
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · −1 2

 .

Thus Im(1− α∗) is spanned by the elements bi − bi+1 for 0 ≤ i ≤ n− 3 together with the
element bn−2 +

∑n−2
i=0 bi. Using this one checks that

(5.2) {b0 − bn−2, b1 − bn−2, . . . , bn−3 − bn−2, nbn−2} is a basis for Im(1− α∗).
From (5.1) one sees that

(5.3) {b0 − bn−2, b1 − bn−2, . . . , bn−3 − bn−2, bn−2} is a basis for H1(Λ).

In particular, rank(Im(1 − α∗)) = rank(H1(Λ)), forcing ker(1 − α∗) = {0}. Moreover,
combining (5.3) with (5.2) shows that coker(1−α∗) ∼= Z/nZ. Thus Theorem 4.13 implies
that H2(Λ ×α Z) = {0} = ker(1 − α∗) = {0}, and that H1(Λ ×α Z) is an extension of Z
by Z/nZ and hence is equal to Z ⊕ (Z/nZ). In particular, for n = 2, the graph Λ ×α Z
has the same homology as the Klein bottle.

Example 5.2. Let T1 be the 1-graph with a single vertex and a single edge as in Exam-
ple 2.2(1), and let Λ and Γ = Λ×α Z be as in Example 5.1 with n = 2. Then Λ× T1 has
the same skeleton as Γ. To compute the homology of Λ × T1, we can use the Künneth
theorem (Theorem 4.3): each of T1 and Λ consists of a single simple closed undirected
path, so it is routine to verify that Hi(T1) = Hi(Λ) = Z for each of i = 0, 1. Hence

Hi(Λ× T1) = Z(2
i) for all i. So the homology of Λ× T1 is the same as that of the 2-torus

(see Example 4.5), and in particular is not equal to that of Γ, even though they have the
same skeleton.

We next describe a suite of examples of 2-graphs whose homology mirrors that of the
sphere, the torus, the Klein bottle and the projective plane. We have presented examples
matching the Klein bottle and the torus previously (see Examples 5.1 and 4.5), but we
provide presentations here which suggest standard planar diagrams for these four spaces.

Remark 5.3. For a number of the following examples, we give a non-standard presentation
of the skeleton and factorisation rules. Specifically for Examples 5.4–5.7, we present a
commuting diagram (in the category Λ) which includes all 2-cubes as commuting squares.
These diagrams are not the same as the skeletons because they involve some repeated
vertices and edges. We present our examples this way to suggest planar diagrams for
their topological realisations (see Section 6); indeed, we will sometimes refer to these
commuting diagrams, very imprecisely, as planar diagrams for the associated 2-graphs.

When using this presentation of a 2-graph, one must check that the collection of squares
specified in the diagram is complete: since vertices may be repeated in a planar diagram,
it is possible that there are some bi-coloured paths in the skeleton which do not appear
as the sides of a square in the diagram, and in this case, the diagram may not completely
specify a 2-graph, and is in any case not a planar diagram for the 2-graph in the sense
just discussed.
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Example 5.4. Let Λ be the 2-graph described by the following planar diagram (see Re-
mark 5.3).

w

z

w

u

x

v

w

y

w

a a

d c

b b

h

h

e

f

g

g

β

γ

α

δ

The skeleton of Λ is pictured in (5.4). The Greek letters in the centres of the commuting
squares in the above diagram are the morphisms of degree (1, 1). So α = ce = ga,
β = de = ha, etc.

Since Λ is connected, H0(Λ) ∼= Z by Proposition 3.12. We have ∂2(α− β + γ − δ) = 0
by a straightforward calculation and one can check that ∂2(n1α+ n2β + n3γ) = 0 implies
n1 = n2 = n3 = 0, so H2(Λ) = ker(∂2) ∼= Z. Moreover, ∂2(C2(Λ)) is spanned by ∂2(α),
∂2(β) and ∂2(γ).

One checks that the set {∂2(α), ∂2(β), ∂2(γ), d, e, f, g, h} forms a basis for C1(Λ). So
C1(Λ) = ∂2(C2(Λ))⊕Z{d, e, f, g, h}. Since H0(Λ) = Z and C0(Λ) has rank 6, the image of
∂1 has rank 5. It follows that H1(Λ) = {0}. Hence Λ has the same homology as the sphere
S2. If we draw its skeleton as follows, the resemblance between Λ and a combinatorial
sphere is striking.

(5.4) uv

w

x

y

z

a

e

b

f

g
h

c

d

Example 5.5. Consider the 2-graph Σ with planar diagram (see Remark 5.3) on the left
and skeleton on the right in the following diagram.

x

v

x

w

u

w

x

v

x

b a

c d

b a

f

e

h

g

f

e

u
w

x
v

g

h

e

f
a

b
c

d
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Let Λ be the 1-graph with two vertices connected by two parallel edges used in Exam-
ple 5.2; we observed in the same example that the homology of Λ is that of the circle.
Then Σ is isomorphic to Λ × Λ, so by the Künneth theorem it has the homology of the
2-torus as in Example 5.2.

Example 5.6. We thank Mike Whittaker for his contributions to the construction and
analysis of this example.

Let Λ be the 2-graph with planar diagram (see Remark 5.3) on the left and skeleton on
the right in the following diagram. As above, the Greek letters in the centres of squares
denote the morphisms in Λ(1,1) — so α = ga = ce etc.

x

v

y

w

u

w

y

v

x

b a

c d

a b

f

e

h

g

e

f

γ

α

β

δ

u

v

w

xy

c d

g h
b

f

a

e

We claim that H0(Λ) ∼= Z, H1(Λ) ∼= Z/2Z and H2(Λ) = {0}. Indeed, C0(Λ) =
Z{u, v, w, x, y}, C1(Λ) = Z{a, b, c, d, e, f, g, h} and C2(Λ) = Z{α, β, γ, δ}. Since Λ is
connected, H0(Λ) ∼= Z which implies that ∂1(C1(Λ)) has rank 4. Since rankC1(Λ) = 8,
rank ker(∂1) = 4 also. If ∂2(n1α + n2β + n3γ + n4δ) = 0, then consideration of the
coefficients of c and h forces n1 = −n3 = n2, and then that the coefficient of a is zero
forces n1 = n2 = 0, and hence n3 = 0 also. Now considering the coefficient of d shows that
n4 = −n2 = 0. So ∂2 is injective, forcing H2(Λ) = {0}, and also that rank ∂2(C2(Λ)) = 4.
We observed above that rank ker(∂1) = 4; hence

rank(H1(Λ)) = rank(ker(∂1))− rank(∂2(C2(Λ))) = 0.

It is routine to check that {c−d, g−h, c+f−b−h, d+e−a−h} is a basis for ker(∂1). To
determine the image of ∂2, first note that c+ f − b−h = ∂2(γ) and d+ e− a−h = ∂2(β).
Moreover (c−d) + (g−h) is the image of γ− δ, which implies that H1(Λ) is generated by
the class of c− d. Finally, 2(c− d) = ∂2(α− β + γ − δ), and since {α, β, γ, α− β + γ − δ)
is a basis for C2(Λ), it follows that H1(Λ) ∼= Z/2Z as required.

These homology groups are the same as those of the projective plane.

Example 5.7. Consider the 2-graph Λ with planar diagram (see Remark 5.3) on the left
and skeleton on the right in the following diagram.

x

v

x

w

u

w

x

v

x

b a

c d

b a

f

e

h

g

e

f

γ

α

β

δ

u v

w x

c

d

a

b

hg fe
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One can check, by calculating with bare hands, that the homology of this 2-graph is the
same as that of the 2-graph Λ×αZ of Example 5.1 with n = 2; that is, the same homology
as the Klein bottle. Alternatively, one can deduce this from the topological realisation
(see Remark 5.9 below).

Example 5.8. In Example 5.6, we realised the homology of the projective plane using a
2-graph Λ. This suggests that there ought to be a 2-graph with the homology of the
sphere carrying a free action of Z/2Z such that the quotient is isomorphic to Λ. By [25,
Remark 5.6] (see also [34]), such a 2-graph must be a skew product of Λ by a functor
taking values in Z/2Z. Here we present such an example. There is a functor c : Λ→ Z/2Z
determined by c−1(0) = {b, c, g} and c−1(1) = {a, d, e, f, h}, and the skew-product graph
Λ ×c Z/2Z has the desired property. The visual intuition that has pervaded this section
appears again: one can check without too much difficulty that the skeleton of Λ×c (Z/2Z)
can be drawn as follows (we have not labeled the edges since their labels can be deduced
from the definition of the skew product and the labels of the vertices).

(w, 1)

(y, 0)

(v, 1)

(x, 0)

(w, 0)

(y, 1)

(v, 0)

(x, 1)

(u, 1)

(u, 0)

This picture suggests how to view the action of Z/2Z on the skew-product graph as the
action of the antipodal map on the sphere.

A similar situation arises for the Klein bottle and torus. Let Γ denote the crossed
product graph Λ ×α Z of Example 5.1 with n = 2, so that the homology of Γ coincides
with that of the Klein bottle. Let c : Γ → Z/2Z be the functor c(λ, n) = n (mod 2).
One can check that Γ ×c (Z/2Z) is isomorphic to Λ × C2 where Λ is the 1-graph from
Example 5.1 (with n = 2), and C2 is the path category of the simple directed cycle
of length 2. In particular, by the Künneth theorem, the homology of Γ ×c (Z/2Z) is
isomorphic to that of the torus. So our 2-graph representative Γ of the Klein bottle can
be realised as a quotient of a 2-graph representative of a torus by a free Z/2Z action.

Remark 5.9. As observed in [21], the topological realisations of the 2-graphs of Examples
5.4–5.7 (see Section 6) are indeed homeomorphic to each of the sphere, the torus, the pro-
jective plane and the Klein bottle as their homology suggests. In particular, Theorem 6.3
below combined with the descriptions of their topological realisations in [21] provide an
alternative proof that these 2-graphs have the homology we have claimed for them.

6. Connection with homology of topological spaces

In this section, we show that the homology of the topological realisation XΛ of a k-
graph as defined in [21] agrees with the homology of Λ defined in §2. The corresponding
fact for a cubical set was known already to Grandis: he indicates at the end of [14,
Section 1.8] that the result is well known, with a reference to [32] for the simplicial case.
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However, we have been unable to locate the details for cubical sets in the literature, so
we include a proof of our result based on that given for simplicial complexes by Hatcher
[17]. We prove in Appendix B that the topological realisation of a k-graph we define here

is homeomorphic to the topological realisation RQ̃(Λ) of the associated cubical set Q̃(Λ)
(see Appendix A).

In [21], the topological realisation of a k-graph Λ is defined as follows. For n ∈ Nk,
let [0, n] := {t ∈ Rk : 0 ≤ t ≤ n}. For t ∈ Rk, let btc be the element of Zk such that
btci = btic = max{n ∈ Z : n ≤ ti} for all i ≤ k. Similarly, define dte by dtei = min{n ∈
Z : ti ≤ n} for i ≤ k. Consider the following equivalence relation on

⊔
λ∈Λ

(
{λ}×[0, d(λ)]

)
:

for µ, ν ∈ Λ and s, t ∈ Rk with 0 ≤ s ≤ d(µ) and 0 ≤ t ≤ d(ν), we define

(6.1) (µ, s) ∼ (ν, t) ⇐⇒ s− bsc = t− btc and µ(bsc, dse) = ν(btc, dte).

The topological realisation XΛ is the quotient space
(⊔

λ∈Λ{λ}× [0, d(λ)]
)
/ ∼. As in [21]

we let [λ, t] denote the equivalence class of the point (λ, t).

Definition 6.1. For r ∈ N, let Ir denote the unit cube [0, 1]r in Rr. Fix an r-cube
λ ∈ Qr(Λ). Express d(λ) = ei1 + · · · + eir where i1 < · · · < ir. Let ιλ : Ir → XΛ denote
the map (t1, . . . , tr) 7→

[
λ,
∑r

m=1 tmeim
]
. Then Φ(λ) := ιλ defines a homomorphism

Φ : Cr(Λ)→ Ctop
r (XΛ).

Remark 6.2. The map Φ intertwines the boundary maps, so is a chain map. It therefore
induces a homomorphism Φ∗ : H∗(Λ)→ Htop

∗ (XΛ).
It will be shown in [21] that each k-graph morphism θ : Λ → Γ induces a continuous

map θ̃ : XΛ → XΓ such that θ̃ ◦ ιλ = ιθ(λ) for all λ ∈ Q(Λ). Hence both the chain map
Φ and the homomorphism Φ∗ of homology are natural in Λ. (with respect to k-graph
morphisms).

Theorem 6.3. Let Λ be a k-graph. For each r ≥ 0, the map Φ∗ : Hr(Λ)→ Htop
r (XΛ) is

an isomorphism. Moreover this isomorphism is natural in Λ.

Our proof parallels the argument of the first three paragraphs of [17, Theorem 2.27]
where it is shown that the singular homology of a ∆-complex (see [17, page 103]) is the
same as its simplicial homology. We first need to do some setting up.

Remark 6.4. We claim that Massey’s definition of singular homology, which is based on
cubes, is equivalent to the usual one based on simplices. By the uniqueness theorem
of [31], if X has the homotopy type of a CW-complex, then any homology theory on
X which satisfies the Eilenberg-Steenrod axioms [8] and which is additive in the sense
that it carries disjoint unions to direct sums is naturally isomorphic to the usual singular
homology. The Eilenberg-Steenrod axioms and additivity are all verified for Massey’s
singular homology in [30, Chapter VII]: Axiom 1 is (3.4), Axiom 2 is (3.5), Axiom 3
is (7.6.1), Axiom 4 is Theorem 5.1, Axiom 5 is Theorem 6.1, Axiom 6 is Theorem 6.2,
Axiom 7 is Example 2.1, and additivity is Proposition 2.7. Alternatively that Massey’s
homology agrees with the simplicial formulation also follows from the original uniqueness
theorem [8, Theorem 10.1] since we can triangulate XΛ by adding a vertex at the centre
of each cube (thereby dividing each r-cube into 2rr! r-simplices).

To run Hatcher’s argument, we use the cellular structure of XΛ regarded as a CW-
complex. For 0 ≤ m ≤ k let Xm denote the union of the images of the ιλ where λ ranges
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over all r-cubes with r ≤ m. We formally define CΛ
r (Xm) = Cr(Λ) if m ≥ r and to be

zero otherwise. We obtain a nested sequence

CΛ
∗ (X0) ⊆ CΛ

∗ (X1) ⊆ · · · ⊆ CΛ
∗ (Xk) = C∗(Λ)

of complexes. In particular, for l ≤ m we may form the quotient complex

CΛ
∗ (Xm, Xl) := CΛ

∗ (Xm)/CΛ
∗ (Xl),

which has relative homology groups HΛ
∗ (Xm, Xl). Then

(6.2) HΛ
r (Xm, Xm−1) ∼= CΛ

r (Xm, Xm−1) =

{
Cr(Λ) if m = r,

{0} otherwise.

Since every short exact sequence of complexes induces a long exact sequence in homol-
ogy (see [17, Theorem 2.16]), we obtain a long exact sequence

· · · −→ HΛ
r+1(Xm, Xm−1) −→ HΛ

r (Xm−1) −→ HΛ
r (Xm) −→ HΛ

r (Xm, Xm−1)

−→ HΛ
r−1(Xm−1) −→ · · · −→ HΛ

0 (Xm, Xm−1).
(6.3)

The map Φ : C∗(Λ)→ Ctop
∗ (XΛ) induces a map from C∗(Xm) to Ctop

∗ (Xm) for each m.
Hence, it induces a map, also called Φ, from CΛ

∗ (Xm, Xm−1) to Ctop
∗ (Xm, Xm−1).

The crucial step in Hatcher’s proof of [17, Theorem 2.27] is the following isomorphism.

Lemma 6.5. With notation as above, the induced map

Φ∗ : HΛ
r (Xm, Xm−1)→ Htop

r (Xm, Xm−1)

is an isomorphism for each r,m.

Proof. Suppose that r 6= m. Then HΛ
r (Xm, Xm−1) = {0} by (6.2) and Htop

r (Xm, Xm−1) =
{0} by [17, Lemma 2.3.4 (a)]. Hence Φ∗ : HΛ

r (Xm, Xm−1) → Htop
r (Xm, Xm−1) is an

isomorphism for m 6= r. Since

HΛ
r (Xr, Xr−1) ∼= Cr(Λ) = ZQr(Λ) ∼= Htop

r (Qr(Λ)× Ir, Qr(Λ)× ∂Ir),

it suffices to show that the canonical map Qr(Λ)×Ir → Xr given by (λ, t) 7→ ιλ(t) induces
an isomorphism

Htop
r (Qr(Λ)× Ir, Qr(Λ)× ∂Ir) ∼= Htop

r (Xr, Xr−1).

To see this, observe that (Xr, Xr−1) is a good pair (see [17, p. 114]) in the sense that Xr−1

is a nonempty closed subset of Xr which is a deformation retract of the open set

Xr−1 ∪ {[λ, t] : λ ∈ Qr(Λ),min{ti, 1− ti} < 1/3 for 1 ≤ i ≤ r}.

Let Xr/Xr−1 be the quotient of Xr obtained by identifying Xr−1 to a point. That
(Xr, Xr−1) is a good pair combines with [17, Proposition 2.22] and Remark 6.4 to show
that

Htop
r (Xr, Xr−1) ∼= Htop

r (Xr/Xr−1).

Moreover, Φr induces a homeomorphism of (Qr(Λ) × Ir)/(Qr(Λ) × ∂In) with Xr/Xr−1.
Since (Qr(Λ)× Ir, Qr(Λ)× ∂Ir) is also a good pair, the result follows from another appli-
cation of [17, Proposition 2.22]. �
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Proof of Theorem 6.3. The naturality of Φ∗ was observed in Remark 6.2. So we just need
to show that Φ∗ is an isomorphism.

Both Hr(Λ) and Hr(XΛ) are trivial for r > k, so we may assume that 0 ≤ r ≤ k.
Fix m ∈ N. If r ≤ m then we may regard the map Φ : Cr(Λ) → Ctop

r (XΛ) given in
Definition 6.1 as a map from CΛ

r (Xm) to Ctop
r (Xm); whereas if r > m then both CΛ

r (Xm)
and Ctop

r (Xm) are trivial, and we define Φ : CΛ
r (Xm) → Ctop

r (Xm) to be the trivial map
between trivial groups. As in Remark 6.2, Φ intertwines the boundary maps, and so
induces a homomorphism Φ∗ : HΛ

∗ (Xm)→ Htop
∗ (Xm).

We claim that these maps are all isomorphisms. We proceed by induction on m. Our
base case is m = 0. Since X0 is equal to the discrete space Λ0, each of HΛ

0 (X0) and
Htop

0 (X0) is canonically isomorphic to ZΛ0, and Φ∗ is the identity map. Moreover, for
r ≥ 1, we have HΛ

r (X0) = Htop
r (X0) = {0}, so Φ∗ is trivially an isomorphism. Now

fix m ≥ 1 and suppose as an inductive hypothesis that Φ∗ is an isomorphism between
HΛ
∗ (Xm−1) and Htop

∗ (Xm−1). Fix r ≥ 0. Since Φ∗ induces a map of short exact sequences
of complexes, the naturality of the connecting map in the long exact sequence arising
from a short exact sequence of complexes yields the following commuting diagram.

HΛ
r (Xm, Xm−1) HΛ

r (Xm−1) HΛ
r (Xm) HΛ

r−1(Xm, Xm−1) HΛ
r−1(Xm−1)

Htop
r (Xm, Xm−1) Htop

r (Xm−1) Htop
r (Xm) Htop

r−1(Xm, Xm−1) Htop
r−1(Xm−1)

Φ∗ Φ∗ Φ∗ Φ∗ Φ∗

The inductive hypothesis ensures that the second and fifth vertical maps are isomorphisms,
and the first and fourth maps are isomorphisms by Lemma 6.5. Thus the Five Lemma
(see, for example, [17, p 129]) implies that the middle vertical map is also an isomorphism,
completing the induction. Hence, Φ∗ : HΛ

r (Xm) → Htop
r (Xm) is an isomorphism for all

m. Since Hr(Λ) = HΛ
r (Xk) and Htop

r (X) = Htop
r (Xk) for all r ≥ 0 the desired result

follows. �

7. Cohomology and twisted k-graph C∗-algebras

In this section we introduce cohomology for k-graphs and indicate how a T-valued 2-
cocycle may be used to twist a k-graph C∗-algebra. We first define the cohomology of
a k-graph and provide a Universal Coefficient Theorem. We then show how to associate
to each T-valued 2-cocycle φ on Λ a twisted C∗-algebra C∗φ(Λ). We obtain as relatively
elementary examples all noncommutative tori and the Heegaard-type quantum 3-spheres
of [1]. We will study cohomology for k-graphs and the structure of twisted k-graph C∗-
algebras in greater detail in [28].

Notation 7.1. Let Λ be a k-graph and let A be an abelian group. For r ∈ N, we write
Cr(Λ, A) for the collection of all functions f : Qr(Λ) → A. We identify Cr(Λ, A) with
Hom(Cr(Λ), A) in the usual way. Define maps δr : Cr(Λ, A)→ Cr+1(Λ, A) by

δr(f)(λ) := f(∂r+1(λ)) =
r+1∑
i=1

1∑
l=0

(−1)i+lf(F l
i (λ)).

Then (C∗(Λ, A), δ∗) is a cochain complex.
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Mac Lane [29, Chapter II, Equation (3.1)] associates a cochain complex to a chain
complex and an abelian group in a similar way, but with a slightly different sign convention
for the boundary map. The resulting cohomology is isomorphic to the following.

Definition 7.2. We define the cohomology H∗(Λ, A) of the k-graph Λ with coefficients in
A to be the cohomology of the complex C∗(Λ, A); that is Hr(Λ, A) := ker(δr)/ Im(δr−1).
For r ≥ 0, we write Zr(Λ, A) := ker(δr) for the group of r-cocycles, and for r > 0, we
write Br(Λ, A) = Im(δr−1) for the group of r-coboundaries.

Theorem 7.3 (Universal Coefficient Theorem). Let Λ be a k-graph, and let A be an
abelian group. For each r ≥ 0, there is a short exact sequence

0 −→ Ext(Hr−1(Λ), A)
α−→ Hr(Λ, A)

β−→ Hom(Hr(Λ), A) −→ 0,

and the maps α and β are natural in A and Λ.

Proof. This follows directly from Mac Lane’s theorem [29, Theorem III.4.1] applied to the
complex C∗(Λ). �

Recall from [25] that a k-graph Λ is row-finite if vΛn is finite for all v ∈ Λ0 and n ∈ Nk,
and is locally convex if, whenever 1 ≤ i 6= j ≤ k and λ ∈ Λei with r(λ)Λej 6= ∅, we have
s(λ)Λej 6= ∅ also.

We will follow the usual convention of writing the binary operation in an abelian group
A additively, except when A = T where it is written multiplicatively.

Definition 7.4 (cf. [36, Equation (3.1)] and [37, Theorem C.1(i)–(ii)]). Let Λ be a row-
finite locally convex k-graph and fix φ ∈ Z2(Λ,T). A Cuntz-Krieger φ-representation of
Λ in a C∗-algebra A is a set {pv : v ∈ Λ0} ⊆ A of mutually orthogonal projections and a

set {sλ : λ ∈
⋃k
i=1 Λei} ⊆ A satisfying

(1) for all λ ∈ Λei , s∗λsλ = ps(λ);
(2) for all 1 ≤ i < j ≤ k and µ, µ′ ∈ Λei , ν, ν ′ ∈ Λej such that µν = ν ′µ′,

sν′sµ′ = φ(µν)sµsν ; and

(3) for all v ∈ Λ0 and all i = 1, . . . , k such that vΛei 6= ∅,

pv =
∑
λ∈vΛei

sλs
∗
λ.

The condition that a set {pv : v ∈ Λ0} consists of mutually orthogonal projections is
characterised by the algebraic relations p∗v = p2

v = pv and pvpw = δv,wpv for all v, w ∈ Λ0.
Given any collection {pv : v ∈ Λ0} in a ∗-algebra satisfying these relations, and given any

family {sλ : λ ∈
⋃k
i=1 Λei} in the same ∗-algebra satisfying relation (1), the norm of the

image of each pv and of each sλ under any representation on Hilbert space is at most 1.
So as in [2, Definition 1.2], there is a universal C∗-algebra generated by a Cuntz-Krieger
φ-representation of Λ. A priori, this could be the zero algebra; but we will exhibit some
interesting examples (see Examples 7.7, 7.9, 7.10) where it is not, and we will show in the
forthcoming article [28] that in fact there is always a Cuntz-Krieger φ-representation of
Λ in which every generator is nonzero.

Definition 7.5. Let Λ be a row-finite locally convex k-graph. Let φ ∈ Z2(Λ,T). We define
C∗φ(Λ) to be the universal C∗-algebra generated by a Cuntz-Krieger φ-representation of Λ.
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Proposition 7.6. Let Λ be a row-finite locally convex k-graph.

(1) Let 1 denote the identity element of C2(Λ,T). Then C∗1(Λ) is canonically isomor-
phic to the k-graph algebra C∗(Λ) defined in [36].

(2) Let ψ, φ ∈ Z2(Λ,T), and suppose that α ∈ C1(Λ,T) satisfies φ = δ1(α)ψ so that φ

and ψ are cohomologous. Let {pψv : v ∈ Λ0}, {sψλ : λ ∈
⊔k
i=1 Λei} be the universal

generating Cuntz-Krieger ψ-representation of Λ and similarly for φ. Then there
is an isomorphism π : C∗ψ(Λ) → C∗φ(Λ) such that π(pψv ) = pφv for all v ∈ Λ0 and

π(sψλ ) = α(λ)sφλ for all λ ∈
⋃k
i=1 Λei.

Proof. (1) The combination of [37, Theorem C.1 and Lemma B.4] shows that C∗(Λ) is
the universal C∗-algebra generated by elements satisfying the relations of Definition 7.4
with φ(µν) = 1 for all µν ∈ Q2(Λ).

(2) For λ ∈
⋃k
i=1 Λei , let tλ := α(λ)sφλ. If µν = ν ′µ′ where µ, µ′ ∈ Λei , ν, ν ′ ∈ Λej and

1 ≤ i < j ≤ k, then δ1(α) = α(µ′)−1α(ν ′)−1α(µ)α(ν). Hence

α(ν ′)α(µ′)φ(µν) = α(ν ′)α(µ′)δ1(α)(µν)ψ(µν) = α(µ)α(ν)ψ(µν).

Using this, we calculate:

tν′tµ′ = α(ν ′)α(µ′)sν′sµ′ = α(ν ′)α(µ′)φ(µν)sµsν = α(µ)α(ν)ψ(µν)sµsν = ψ(µν)tµtν .

So {tλ : λ ∈
⋃k
i=1 Λei} satisfies Definition 7.4(2) for the cocycle ψ. Hence the collec-

tions {pφv : v ∈ Λ0} and {tλ : λ ∈
⋃k
i=1 Λei} in C∗φ(Λ) constitute a Cuntz-Krieger ψ-

representation of Λ. The universal property of C∗ψ(Λ) therefore gives a homomorphism

π : C∗ψ(Λ) → C∗φ(Λ) such that π(pψv ) = pφv for all v ∈ Λ0 and π(sψλ ) = tλ = α(λ)sφλ for all

λ ∈
⋃k
i=1 Λei . Reversing the roles of ψ and φ in the above calculation yields an inverse,

so π is an isomorphism. �

Example 7.7. Let T2 denote N2 regarded as a 2-graph with degree functor the identity
map (see Examples 2.2(1)). Fix θ ∈ [0, 1). There is precisely one 2-cube in T2, namely
(1, 1). Define φ ∈ Z2(T2,T) by φ(1, 1) = e2πiθ. By definition, C∗φ(T2) is the universal
C∗-algebra generated by unitaries Se1 and Se2 satisfying

Se2Se1 = e2πiθSe1Se2 .

That is, C∗φ(T2) is the rotation algebra Aθ.

Remark 7.8. Theorem 2.1 of [22] says that the obstruction to a product system over N2 of
C-correspondences being the product system associated to the 2-graph T2 is measured by
the element ω ∈ T which implements the module isomorphism C⊗ C→ C⊗ C between
X(1,0) ⊗ X(0,1) and X(0,1) ⊗ X(1,0). We may regard H2(T2,T) as the receptacle for this
obstruction.

Example 7.9. More generally consider the k-graph Tk for k ≥ 2. Then the twisted k-graph
C∗-algebras over Tk correspond exactly to the noncommutative tori (see for example [20],
[9]; note that their sign conventions differ). Let θ be a skew-symmetric k× k real matrix,
then the associated noncommutative torus Aθ is the universal C∗-algebra generated by k
unitaries u1, . . . , uk, satisfying (see [20])

(7.1) unum = e2πiθm,numun for all 1 ≤ m,n ≤ k.
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Recall that Q2(Tk) = {em + en | 1 ≤ m < n ≤ k}. Set φθ(em + en) = e2πiθm,n . Then φ(θ)
is a 2-cocycle. Moreover C∗φ(θ)(Tk) is the universal C∗-algebra generated by k unitaries

Se1 , . . . , Sek satisfying (7.1). Hence, Aθ ∼= C∗φ(θ)(Tk).

Example 7.10. In [1] the authors describe C∗-algebras C(S3
pqθ) where p, q, θ are parameters

in [0, 1). They show that C(S3
pqθ)
∼= C(S3

00θ) [1, Theorem 2.8] for all p, q, θ. By definition,

C(S3
00θ) is the universal C∗-algebra generated by elements S and T satisfying

(1− SS∗)(1− TT ∗) = 0,(7.2)

S∗S = T ∗T = 1,(7.3)

ST = e2πiθTS, and(7.4)

ST ∗ = e−2πiθT ∗S.(7.5)

It was shown in [16, Remark 3.3] that C(S3
000) is isomorphic to the Cuntz-Krieger algebra

of the unique 2-graph Λ with skeleton EΛ as pictured below.

u vw

a

b c

f

gh

Specifically, the isomorphism C(S3
000)→ C∗(Λ) carries S to sa+sb+sc and T to sf+sg+sh.

Note that T2 = N2 so the degree map on Λ yields a 2-graph morphism f : Λ → T2.
A routine computation shows that f∗ induces an isomorphism on homology. Hence by
Theorem 7.3, f ∗ induces an isomorphism H2(T2,T) ∼= H2(Λ,T).

Let α = ah = hb, β = cg = fc and τ = af = fa; so Q2(Λ) = {α, β, τ}. For each
θ ∈ [0, 1) the 2-cocycle on T2 determined by (1, 1) 7→ e−2πiθ pulls back to a 2-cocycle φθ on
Λ satisfying φθ(α) = φθ(β) = φθ(τ) = e−2πiθ (the preceding paragraph shows that every 2-

cocycle on Λ is cohomologous to one of this form). Fix θ ∈ [0, 1) and let {sλ : λ ∈
⋃k
i=1 Λei}

and {pv : v ∈ Λ0} be the generators of C∗φ(θ)(Λ). Define S, T ∈ C∗φ(θ)(Λ) by S := sa+sb+sc

and T = sf + sg + sh. We have

ST = sasf + scsg + sash = e2πiθsfsa + e2πiθsfsc + e2πiθshsb = e2πiθTS.

So S, T satisfy (7.4). Moreover

T
∗
S = T

∗
puS = (s∗f + s∗g + s∗h)(sαs

∗
α + sβs

∗
β + sτs

∗
τ )(sa + sb + sc)

= s∗f (sβs
∗
β)sc + s∗f (sτs

∗
τ )sa + s∗h(sαs

∗
α)sa

= s∗f (e
2πiθsfsc)(s

∗
gs
∗
c)sc + s∗f (e

2πiθsfsa)(s
∗
fs
∗
a)sa + s∗h(e

2πiθshsb)(s
∗
hs
∗
a)sa

= e2πiθ(scs
∗
g + sas

∗
f + sbs

∗
h) = e2πiθ(sa + sb + sc)(s

∗
f + s∗g + s∗h)

= e2πiθST
∗
,

which establishes (7.5). That S, T also satisfy (7.2) and (7.3) is routine. Hence by the
universal property of C(S3

00θ) the map S → S and T to T extends to a homomorphism ρ
from C(S3

00θ) to C∗φ(θ)(Λ).
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Now let S and T be the generators of C(S3
00θ). Define

qw = 1− SS∗, qv = 1− TT ∗, and qu = SS∗TT ∗,

and

tη = qr(η)Sqs(η) for η ∈ Λe1 , and tη = qr(η)Tqs(η) for η ∈ Λe2 .

It is routine to check that the pair {qu, qv, qw}, {ta, tb, tc, tf , tg, th} is a Cuntz-Krieger
φ(θ)-representation of Λ in C(S3

00θ). So the universal property of C∗φ(θ)(Λ) yields a homo-

morphism ψ : C∗φ(θ)(Λ) → C(S3
00θ) such that ψ(px) = qx for x ∈ Λ0 and ψ(sη) = tη for

η ∈ Λe1 ∪ Λe2 . One verifies that ψ = ρ−1 and it follows that C∗φ(θ)(Λ) ∼= C(S3
00θ).

Our analysis of H2(Λ,T), together with Proposition 7.6, therefore shows that the collec-
tion of twisted 2-graph C∗-algebras associated to Λ is precisely the collection of algebras
C(S3

00θ), and hence precisely the collection of algebras C(S3
pqθ) by [1, Theorem 2.8].

Appendix A. Connections with cubical homology

In this section we show that each k-graph determines a cubical set Q̃(Λ) and that our

homology is isomorphic to that of Q̃(Λ) as defined by Grandis [14]. To define Q̃(Λ) we
must make sense of degeneracy maps and degenerate cubes in a k-graph (see Definition A.1
below), and avoiding this was one motivation for providing a self-contained approach in
Section 3 above. We could instead have made use of Khusainov’s approach [23] using
semicubical sets. This is in a sense more natural for k-graphs since it does not involve
degeneracies: it is straightforward to show that the collection Q∗(Λ) of cubes in a k-
graph forms a semicubical set. However, the sign convention for the boundary maps in
Khusainov’s definition of homology differs from those of both Grandis and Massey [30].

Recall the following definition adapted from [14, §1.2]. In order to avoid a clash of
notation we use fi for the degeneracy maps; we also use 1, 0 in place of +,−.

Definition A.1. A cubical set is a triple X = (Xr, ∂
`
i , fi) consisting of a sequence (Xr)

∞
r=0

of sets, together with, for each r ∈ N, maps

∂`i : Xr → Xr−1 ` ∈ {0, 1}, 1 ≤ i ≤ r and fi : Xr−1 → Xr 1 ≤ i ≤ r

satisfying the cubical relations

∂`i∂
m
j = ∂mj ∂

`
i+1 if j ≤ i,(A.1)

fifj = fi+1fj if j ≤ i,(A.2)

∂`ifj =


fj∂

`
i−1 if j < i,

id if j = i,

fj−1∂
`
i if j > i.

(A.3)

The maps ∂`i are called faces and the fi are called degeneracies.

We now introduce the k-graph analog 1 of the model cocubical set I described in [14,
§1.2] (that is, an object satisfying conditions dual to those set out in Definition A.1).
Recall from Section 2 that for r ≥ 1, 1r =

∑r
i=1 ei (and 10 := 0 ∈ N0). We define (see

Examples 2.2).

1r =

{
Ωr,1r if r ≥ 1;

Ω0 if r = 0.
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For ` = 0, 1 define ε`0 : N0 → N1 by ε`0(0) = `. For 1 ≤ i ≤ r + 1 and ` ∈ {0, 1} define
ε`i : Nr → Nr+1 by

ε`i(n1, . . . , nr) = (n1, . . . , ni−1, `, ni . . . , nr).

If m ≤ n ≤ 1r in Nr, then ε`i(m) ≤ ε`i(n) ≤ 1r+1 in Nr+1; so we may extend ε`i to a
quasimorphism from 1r to 1r+1 by setting ε`i(m,n) := (ε`i(m), ε`i(n)).

Define η1 : N1 → N0 by η1(n) = 0 for all n ∈ N. For r ≥ 2 and 1 ≤ i ≤ r we define
ηi : Nr → Nr−1 by deleting the ith coordinate:

ηi(n1, . . . , nr) := (n1, . . . ni−1, ni+1, . . . nr).

If m ≤ n ≤ 1r in Nr, then ηi(m) ≤ ηi(n) ≤ 1r−1 in Nr−1; so ηi extends to a quasimor-
phism from 1r to 1r−1 such that ηi(m,n) = (ηi(m), ηi(n)).

Proposition A.2. The collection 1 = (1n, ε
`
i , ηi) forms a cocubical set.

Proof. It is routine but tedious to check that the duals of the relations (A.1), (A.2) and
(A.3) hold. �

Now we build a cubical set Q̃(Λ) from a k-graph Λ by considering collections of maps
from 1 into Λ: Given t, r, k ∈ N, a homomorphism h : Nr → Nk is called an admissible
map of rank t, or just an admissible map, if there exist 1 ≤ i1 < · · · < it ≤ r and
1 ≤ j1 < · · · < jt ≤ k such that

(A.4) h(eip) = ejp for p ≤ t and h(ei) = 0 if i 6∈ {i1, . . . , it}.

Let Λ be a k-graph and fix r ∈ N. A quasimorphism ϕ : 1r → Λ is said to be an r-cube
if there is an admissible map h : Nr → Nk such that dΛ ◦ ϕ = h ◦ d1r . We say that an
r-cube ϕ has rank t if the associated admissible map has rank t. For r ≥ 0 let

Q̃r(Λ) = {ϕ : 1r → Λ : ϕ is an r-cube}.

For 1 ≤ i ≤ r + 1 and ` ∈ {0, 1}, define ε`i : Q̃r+1(Λ)→ Q̃r(Λ) by

ε`i(ϕ) := ϕ ◦ ε`i

and for 1 ≤ i ≤ r, define ηi : Q̃r−1(Λ)→ Q̃r(Λ) by

ηi(ϕ) := ϕ ◦ ηi.

Remark A.3. Let ϕ be an (r+1)-cube of rank t with admissible map h : Nr+1 → Nk given
as in equation (A.4) above. If j = ip for some p, then ε`j(ϕ) is an r-cube whose rank is
t − 1. Otherwise it is an r-cube of rank t. In either case, the associated admissible map
h′ : Nr → Nk is given by

(A.5) h′(ei) =


ejp if i < j and i = ip for some p

ejp if i ≥ j and i = ip − 1 for some p

0 otherwise.

So h′(t1, . . . , tr−1) = h(t1, . . . , tj−1, 0, tj, . . . , tr−1).
Similarly, if ϕ is an r-cube of rank t with admissible map h : Nr → Nk given in

equation (A.4) above, then ηj(ϕ) is an (r + 1)-cube of rank t whose admissible map is
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given by

(A.6) h′′(ei) =


ejp if i < j and i = ip for some p

ejp if i > j and i = ip + 1 for some p

0 otherwise.

So h′′(t1, . . . , tr+1) = h(t1, . . . , tj−1, tj+1, . . . , tr+1).

Theorem A.4. Let Λ be a k-graph. Then Q̃(Λ) =
(
Q̃r(Λ

)
, ε`i , ηi) is a cubical set.

Proof. This follows from Proposition A.2. �

In [14, §2.1] the homology of a cubical set is defined as follows: Let X = (Xr, ∂
`
i , fi) be

a cubical set, then for n ≥ 1 we define

Degr(X) =
⋃r
i=1 Im(fi : Xr−1 → Xr) ⊆ Xr

and set Deg0(X) = ∅. The (normalised) chain complex (C∗(X), ∂∗) is defined by

Cr(X) = ZXr/ZDegr(X) = ZXr where Xr = Xr\Degr(X)

∂r(x) =
∑
i,`

(−1)i+` ∂`ix where x ∈ Xr.

The homology of X is then the homology of the complex (C∗(X), ∂∗), so that

Hr(X) = ker ∂r/ Im ∂r+1.

An r-cube ϕ : 1r → Λ is called degenerate if its rank is strictly less than r. Otherwise
it is said to be nondegenerate. We define

Qr(Λ) = {ϕ : 1r → Λ : ϕ is a nondegenerate r-cube}
Dr(Λ) = {ϕ : 1r → Λ : ϕ is a degenerate r-cube},

so Q̃r(Λ) = Qr(Λ) tDr(Λ).

Lemma A.5. Let Λ be a k-graph. Then

(1) for 1 ≤ i ≤ r and ` = 0, 1, ε`i : Q̃r+1(Λ) → Q̃r(Λ) preserves nondegenerate cubes,
that is for ϕ ∈ Qr+1(Λ) we have ε`i(ϕ) ∈ Qr(Λ);

(2) for 1 ≤ i ≤ r and any ϕ ∈ Q̃r−1(Λ) we have ηi(ϕ) ∈ Dr(Λ);

(3) for all r ≥ 1 we have Dr(Λ) =
⋃r
i=1 ηi

(
Q̃r−1(Λ)

)
.

Proof. For (1), suppose that ϕ : 1r+1 → Λ has rank r + 1. Then ε`i(ϕ) : 1r → Λ has rank
r; so ε`i(ϕ) ∈ Qr(Λ).

For (2), suppose that ϕ : 1r−1 → Λ has rank t ≤ r − 1. Then ηi(ϕ) : 1r → Λ has rank
t < r; so ηi(ϕ) ∈ Dr(Λ).

For (3), suppose that ϕ ∈ Dr(Λ), that is ϕ : 1r → Λ has rank t < r. Then there is
an admissible map h : Nr → Nk of rank t such that dΛ ◦ ϕ = h ◦ d1r . Let 1 ≤ i ≤ r be
such that h(ei) = 0. Since ϕ does not depend on the ith coordinate, we have ϕ = ηiε

0
i (ϕ);

hence, ϕ = ηi(ϕ
′) where ϕ′ = ε0

i (ϕ) ∈ Q̃r−1(Λ). �

Grandis builds his directed homology from the complex given in the following lemma
(see [14, §2.1]).
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Lemma A.6. Let Λ be a k-graph. Let

Cr(Λ) = ZQr(Λ)

∂r(λ) =
1∑
`=0

r∑
i=1

(−1)i+` ε`i(λ) λ ∈ Qr(Λ)(A.7)

Then (C(Λ)∗, ∂∗) is a chain complex.

Proof. Theorem A.4 implies that Q̃(Λ) = (Q̃r(Λ), ε`i , ηi) is a cubical set. By Lemma A.5
(1) we see that ε`i

(
Qr(Λ)

)
⊂ Qr−1(Λ) and so ∂r is well defined. That ∂r ◦∂r+1 = 0 follows

from the property (A.1) of ε`i . Hence, (C∗(Λ), ∂∗) is a complex. �

Our aim is to show that the homology H∗(Λ) defined by the complex (C∗(Λ), ∂∗) is
the same as the homology of the complex (C∗(Λ), ∂∗) described in §1. We do this in
Theorem A.9 by showing that the complexes are isomorphic. Recall the definition of
Qr(Λ) given in §2:

Qr(Λ) = {λ ∈ Λ : d(λ) ≤ 1k, |d(λ)| = r}.

Lemma A.7. Let Λ be a k-graph. For r ≥ 0 and λ ∈ Qr(Λ) there is a unique ϕλ ∈ Qr(Λ)
such that ϕλ(0,1r) = λ. Conversely, given ϕ ∈ Qr(Λ), the path λ = ϕ(0,1r) ∈ Qr(Λ)
satisfies ϕλ = ϕ. The map λ 7→ ϕλ is a bijection from Qr(Λ) to Qr(Λ) with inverse
ϕ 7→ ϕ(0,1r).

Proof. The result is trivial when r = 0 because 10 = {0}.
Fix r ≥ 1 and λ ∈ Qr(Λ). Let d(λ) = ei1 + · · · + eir , and define an admissible map

h : Nr → Nk by h(ej) = eij for j = 1, . . . , r. Define ϕλ : 1r → Λ by

ϕλ(m,n) = λ(h(m), h(n))

Then ϕλ : 1r → Λ is a nondegenerate r-cube with ϕλ(0,1r) = λ. The factorisation
property ensures that there is only one nondegenerate cube with range λ.

Now fix ϕ ∈ Qr(Λ). Suppose that d(ϕ(0,1r)) = ei1 +· · ·+eir with 1 ≤ i1 < · · · < ir ≤ k.
Let λ = ϕ(0,1r) and define h : Nr → Nk by h(ej) = eij . Then for (m,n) ∈ 1r we have

ϕλ(m,n) = λ(h(m), h(n)) = ϕ(m,n);

so ϕλ = ϕ as required. �

Recall from Section 2 that for λ ∈ Qr(Λ), if we express d(λ) = ei1 + · · · + eir with
1 ≤ i1 < · · · < ir ≤ k, then

F 0
j (λ) = λ(0, d(λ)− eij) and F 1

j (λ) = λ(eij , d(λ)).

Lemma A.8. Let Λ be a k-graph and r ≥ 1. Then for λ ∈ Qr(Λ) we have

(A.8) ε`j(ϕλ)(0,1r−1) = F `
j (λ) in Qr−1(Λ).
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Proof. Let d(λ) = ei1 + · · ·+ eir and define h : Nr → Nk by h(ej) = eij for j ≤ r. Then

ε`j(ϕλ)(0,1r−1) = ϕλ(ε
`
j(0), ε`j(1r−1))

= λ(h(ε`j(0)), h(ε`j(1r−1)))

=

{
λ(0, d(λ)− eij) if ` = 0

λ(eij , d(λ)) if ` = 1

= F `
j (λ). �

Theorem A.9. Let Λ be a k-graph then the bijection of Lemma A.7 induces an isomor-
phism of complexes (C∗(Λ), ∂∗) ∼= (C∗(Λ), ∂∗). Hence H∗(Λ) ∼= H∗(Λ).

Proof. By Lemma A.7 the map λ 7→ ϕλ induces an isomorphism θr : Cr(Λ)→ Cr(Λ). Let
λ ∈ Qr(Λ). By Lemma A.8 we have θr−1(F `

i (λ)) = ε`i(ϕλ) for i = 1, . . . , r and ` = 0, 1.
Hence, by (3.1) and (A.7) we have

∂rθr(λ) = θr−1∂r(λ)

and the result follows. �

Appendix B. Topological realisations

Given a k-graph Λ we show that the topological realisation XΛ of Λ is homeomorphic

to the topological realisation RQ̃(Λ) of the associated cubical set Q̃(Λ) as defined in [14,
§1.8]. We define the cocubical set I∗ = (Ir, ε̇`i , η̇i) of [14] as follows (we modify Grandis’
notation to align with ours from Appendix A). For r ≥ 0 let Ir be the unit cube in Rr.
For 1 ≤ i ≤ r + 1 and ` ∈ {0, 1} define the coface maps ε̇`i : Ir → Ir+1 and for 1 ≤ i ≤ r
define codegeneracy maps η̇i : Ir → Ir−1 by

ε̇`i(t)j =


tj if j < i

` if j = i

tj−1 if j > i

and η̇i(t)j =

{
tj if j < i

tj+1 if j ≥ i.
.

Recall from [14] that RQ̃(Λ) is a topological space endowed with maps ϕ̂ : Ir → RQ̃(Λ)

for each ϕ ∈ Q̃r(Λ) satisfying

(B.1) ϕ̂ ◦ ε̇`i = (ε`i(ϕ))̂ and ϕ̂ ◦ η̇i = (ηi(ϕ)) ,̂

and is uniquely determined by the property that for any topological space X and any

collection of continuous maps {ϕ̃ : Ir → X | 1 ≤ r, ϕ ∈ Q̃r(Λ)} satisfying

(B.2) ϕ̃ ◦ ε̇`i = (ε`i(ϕ))∼ and ϕ̃ ◦ η̇i = (ηi(ϕ))∼,

there is a unique continuous map π : RQ̃(Λ)→ X satisfying π ◦ ϕ̂ = ϕ̃ for all ϕ ∈ Q̃(Λ).

Fix ϕ ∈ Q̃r(Λ) and let h : Nr → Nk be the associated admissible map. As in [21] extend
h to a map from Rr to Rk by setting h(t) :=

∑r
i=1 tih(ei). We define a map ϕ̃ : Ir → XΛ

by

(B.3) ϕ̃(t) = [ϕ(0,1r), h(t)].

Lemma B.1. Let Λ be a k-graph. The maps ϕ̃ : Ir → XΛ of (B.3) are continuous, and
satisfy (B.2).
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Proof. Fix ϕ ∈ Q̃r(Λ) with associated admissible map h. Since t 7→ (ϕ(0,1r), h(t)) is
continuous from Ir to {ϕ(0,1r)}×[0, h(1r)], and since the quotient map from

⊔
λ∈Q(Λ){λ}×

[0, d(λ)] to XΛ is also continuous, the map ϕ̃ is continuous. We check the identities (B.2).
The calculations are routine but tedious so we only give a detailed proof of the first
identity ϕ̃ ◦ ε̇`i = (ε`i(ϕ))∼, this being the more complicated of the two calculations. The
second identity follows from similar calculations. Define h′ : Rr−1 → Rk as in Remark A.3
by h′(t1, . . . , tr−1) = h(t1, . . . , ti−1, 0, ti, . . . , tr−1). For t ∈ Ir−1

(ϕ̃ ◦ ε̇`i)(t) = ϕ̃(ε̇`i(t)) = [ϕ(0,1r), h(ε̇`i(t))] = [ϕ(0,1r), h
′(t) + `h(ei)].(B.4)

Since h′ is the admissible map associated to ε`i(ϕ), we also have

(ε`i(ϕ))∼(t) = [ε`i(ϕ)(0,1r−1), h′(t)] = [ϕ(ε`i(0,1r−1)), h′(t)](B.5)

Since ` is an integer, h′(t) + `h(ei)− bh′(t) + `h(ei)c = h′(t)− bh′(t)c. Moreover, by the
factorisation property, we have

ϕ(0,1r) = ϕ(0, ε`i(0))ϕ(ε`i(0,1r−1))ϕ(ε`i(1r−1),1r).

Hence, considering separately the cases ` = 0 and ` = 1, one can verify that

ϕ(0,1r)(bh′(t) + `h(ei)c, dh′(t) + `h(ei)e) = ϕ(ε`i(0,1r−1))(bh′(t)c, dh′(t)e)).

The definition (6.1) of the equivalence relation ∼ then gives

(ϕ(0,1r), h
′(t) + `h(ei)) ∼ (ϕ(ε`i(0,1r−1)), h′(t)).

Combining this with (B.4) and (B.5) establishes the first identity in (B.2). �

By Lemma B.1 and the defining property of RQ̃(Λ), there is a unique continuous map

π : RQ̃(Λ)→ XΛ such that π ◦ ϕ̂ = ϕ̃ for all ϕ ∈ Q̃(Λ).

Theorem B.2. Let Λ be a k-graph. The map π : RQ̃(Λ)→ XΛ is a homeomorphism.

Proof. We construct a continuous inverse ψ for π. Define ψ0 :
⊔
d(λ)≤1k{λ} × [0, d(λ)] →

RQ̃(Λ) by

ψ0(λ, t) := ϕ̂λ(t),

where ϕλ : 1|λ| → Λ is the k-graph quasimorphism canonically associated to λ. The map
ψ0 is clearly continuous.

If ψ([µ, s]) := ψ0(µ, s) determines a well-defined map ψ : XΛ → RQ̃(Λ), then it will be
continuous by definition of the topology on XΛ, and will be an inverse for π. So suppose
that (µ, s) ∼ (ν, t) where µ, ν ∈ Q(Λ). Let I(µ,s) := {j : d(µ)j = 1 and sj ∈ {0, 1}}, and
define I(µ,t) similarly. List I(µ,s) = {j1, . . . , jp} where j1 < · · · < jp. Define F(µ,s) to be the

composition of face maps F(µ,s) = F
sj1
j1
◦ · · · ◦ F sjp

jp
(with the convention that if I(µ,s) = ∅,

then F(µ,s) is the identity map), and define F(ν,t) similarly. Then

F(µ,s)(µ) = µ(bsc, dse) = ν(btc, dte) = F(ν,t)(ν)

because [µ, s] = [ν, t]. Let s′ := s− bsc and t′ := t− btc. Then

(µ, s) ∼ (F(µ,s)(µ), s′) = (F(ν,t)(ν), t′) ∼ (ν, t),
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so it suffices to show that ψ0(µ, s) = ψ0(F(µ,s)(µ), s′). Let ε̇(µ,s) : I|µ|−|I(µ,s)| → I|µ| be

the composition ε̇
sjp
jp
◦ · · · ◦ ε̇sj1j1 . Let ε(µ,s) be the composition of face maps in Q̃(Λ)

corresponding to F(µ,s). It is routine to see that

ϕF(µ,s)(µ) = ε(µ,s)(ϕµ).

Hence the identities (B.1) imply that

ϕ̂F(µ,s)(µ) = (ε(µ,s)(ϕµ))̂= ϕ̂µ ◦ ε̇(µ,s).

In particular, if s and s′ are the elements of I|µ| and I|µ|−|I(µ,s)| which map to s and s′

under the associated admissible maps, then

ψ0(F(µ,s)(µ), s′) = ϕ̂F(µ,s)(µ)(s
′) = ϕ̂µ ◦ ε̇(µ,s)(s

′) = ϕ̂µ(s) = ψ0(µ, s). �
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