4 research outputs found

    Design and Analysis of Different Optical Attocells Deployment Models for Indoor Visible Light Communication System

    Get PDF
    Visible light communication (VLC) is a promising candidate that is expected to revolutionize indoor environment communications performance and fulfill fifth generation and beyond (5GB) technologies requirements. It offers high and free bandwidth, electromagnetic interference immunity, low-cost front end and low power consumption. Also, VLC has dual functions that could be utilized in both illumination and communication concurrently. The number of optical attocells (OAs) and their deployment in the room represent the main issue that should be taken into consideration in designing an optimal VLC system. In this paper, we have introduced a new model of five OAs in the typical room. In addition to an investigation of various optical attocells (OAs) deployment models, in which a multi-variable evaluation was performed in terms of received power, illumination, SNR and RMS delay spread in order to determine the optimal OAs model. Also, various modulation schemes performances were investigated which included NRZ-OOK, BPSK, and QPSK in order to improve the BER performance. Results indicated that BPSK modulation had superior BER performance when compared with all OAs models. Further, a comprehensive results analysis and comparison of all proposed models was conducted over various parameters, in which our new proposed OAs model achieved an optimal performance in comparison with the other models

    Visible light communication using new Flip-FBMC modulation system technique

    Get PDF
    Filter bank multi-carrier (FBMC) modulation in the visible light communication (VLC) system is one of the most promising modulation systems in optical wireless communications (OWC), especially in 5G and 6G future applications. FBMC has a wide bandwidth compared to other modulation systems. One of the highest degree essential conditions for utilising the signal in VLC is that the signal is real positive, the signal is agreeable with intensity modulation/direct detection (IM/DD), where Hermitian symmetry (H.S) is utilised to get a real signal (RE) and to be unipolar direct current (DC)-bias is used. Here the challenge arises as this method increases complicating, due to the modulation of the N number of frequency symbols, these symbols need 2N inverse fast fourier transform (IFFT) and fast fourier transform (FFT), in addition to energy consumption. This research focused on the time domain and not the frequency domain by using the traditional complex FBMC generation signal, and to obtain the RE signal by placing the RE signal side by side with the imaginary signal (IMs) in a row, and then using new Flip-FBMC technology, which saves more energy. The proposed technologies provide approximately 57% of the number of IFFT/FFT. The use of Flip-FBMC technology consumes less energy than traditional technologies with better bit error rate (BER) performance

    Design and analysis of different optical attocells deployment models for indoor visible light communication system

    Get PDF
    Visible light communication (VLC) is a promising candidate that is expected to revolutionize indoor environment communications performance and fulfill fifth generation and beyond (5GB) technologies requirements. It offers high and free bandwidth, electromagnetic interference immunity, low-cost front end and low power consumption. Also, VLC has dual functions that could be utilized in both illumination and communication concurrently. The number of optical attocells (OAs) and their deployment in the room represent the main issue that should be taken into consideration in designing an optimal VLC system. In this paper, we have introduced a new model of five OAs in the typical room. In addition to an investigation of various optical attocells (OAs) deployment models, in which a multi-variable evaluation was performed in terms of received power, illumination, SNR and RMS delay spread in order to determine the optimal OAs model. Also, various modulation schemes performances were investigated which included NRZ-OOK, BPSK, and QPSK in order to improve the BER performance. Results indicated that BPSK modulation had superior BER performance when compared with all OAs models. Further, a comprehensive results analysis and comparison of all proposed models was conducted over various parameters, in which our new proposed OAs model achieved an optimal performance in comparison with the other models
    corecore