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1. Introduction 

The ongoing exponential growth of data traffic, mobile devices, and wireless services produced a massive demand 

for new technologies to meet those demands and could support upcoming fifth generation and beyond (5GB). However, 

the current state of radio frequency (RF) technologies is suffering from bandwidth limitations, capacity crunches, high 

delays, and parasitic interferences [2]–[6]. Therefore, emerging, novel and revolutionary technologies such as visible 

light communication (VLC) have been proposed to complement RF technology's shortcomings within indoor short-range 

Abstract: Visible light communication (VLC) is a promising candidate that is expected to revolutionize indoor 

environment communications performance and fulfill fifth generation and beyond (5GB) technologies requirements. 

It offers high and free bandwidth, electromagnetic interference immunity, low-cost front end and low power 

consumption. Also, VLC has dual functions that could be utilized in both illumination and communication 

concurrently. The number of optical attocells (OAs) and their deployment in the room represent the main issue that 

should be taken into consideration in designing an optimal VLC system. In this paper, we have introduced a new 

model of five OAs in the typical room. In addition to an investigation of various optical attocells (OAs) deployment 

models, in which a multi-variable evaluation was performed in terms of received power, illumination, SNR and RMS 

delay spread in order to determine the optimal OAs model. Also, various modulation schemes performances were 

investigated which included NRZ-OOK, BPSK, and QPSK in order to improve the BER performance. Results 

indicated that BPSK modulation had superior BER performance when compared with all OAs models. Further, a 

comprehensive results analysis and comparison of all proposed models was conducted over various parameters, in 

which our new proposed OAs model achieved an optimal performance in comparison with the other models.  
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communication applications. VLC is a potential candidate for 5GB networks, and this is due to its valuable advantages 

and benefits that comprise of large and free bandwidth, cost-effectiveness, low power consumption, and electromagnetic 

interference immunity [6], [7]. Historically basic concepts and several applications of VLC technology were firstly 

introduced in [6], [8]–[10]. Concepts of infrared (IR) and VLC channel modeling were extensively reviewed for both 

indoor and vehicular applications. They were compared and investigated in terms of their advantages, drawbacks, 

similarities and differences [11], [12]. 

The optical attocell (OA) is defined as a light-emitting diodes (LEDs) array or LED bulb/lamb that can be placed on 

a room's ceiling to give illumination and communication simultaneously [13]–[15], and it shares many similarities with 

cellular network’s base station (BS). Moreover, various studies were conducted that used many OAs deployments in a 

typical room model to improve the overall system performance in terms of illumination distribution, communication 

links, and overall performance quality, as introduced in [16]–[19]. 

 

2. Related Work 

The number of OAs and their distribution in an indoor environment (i.e. room) play a significant role in VLC system 

design. Thus, various solutions have been implemented to improve the VLC system performance. One proposed solution 

implemented attocell minimization and maximization methods for accessing users in [20], in which four OAs were used. 

Alternatively, another model with four OAs that consists of different deployment scenarios was discussed in [21], [22], 

and the performance was analyzed in terms of received power and SNR. Further, in [23], different OAs configuration 

with various deployment scenarios was investigated to improve received power, coverage area, and power consumption, 

in which OAs positions have been optimized.  

Also, the tradeoff between SNR, uniformity, and energy efficiency was investigated for four, nine, and sixteen OAs 

[24], [25], and semi-angle at half power were optimized to enhance the VLC system performance in the room. six OAs 

with three different scenarios were studied to optimize the received power and distribution of SNR [26]. Moreover, a 

multi-objective optimization approach was utilized in order to improve received power and SNR distributions with 

minimum power consumption [27]. Further, an inverse design of OAs deployment has been investigated to enhance the 

SNR and reduces the delay in [28]. 

On the other hand, various modulation techniques could be implemented to improve the performance of VLC 

communication system [29]. The OOK (On-Off-Keying) and BPSK (binary phase-shift keying) modulation techniques 

were investigated for the VLC system, both were evaluated in terms of voltage against distance in [30]. Results indicated 

that BPSK could be utilized in the VLC systems and it has the potential to outperform OOK in terms of far communication 

link ranges. Alternatively, spatial modulation technique was investigated for an indoor VLC system as well. It was 

simulated and evaluated based on its theoretical derived symbol error rate (SER) expression in [31]. In [32]–[34], 

additionally, the effect of different modulation techniques on data transmission, dimming, and bandwidth was 

investigated. Besides [35], in which a new approach was utilized to study the BER performance of the VLC system for 

LOS and Non-LOS links. Despite all previous investigations, there are no extensive results and discussions about 

determining the optimal number of OAs that could be deployed in a typical room model to deliver better illumination 

and communication performances. This paper is an expansion of original work presented in [18], [36], where different 

modulation techniques, as well as additional system parameters, are investigated to evaluate the VLC system performance 

in a typical room model. The main contributions of this paper comprise of a new OAs model design for the room ceiling, 

in addition to illumination and communication performances investigations of different OAs deployments for a typical 

room model's ceiling, with a comparison of the new proposed OAs design model results with contemporary models. Also, 

we have investigated the influence of semi-angle at half power on the behavior of illumination, SNR, and received power 

distribution, in addition to BER at different modulation schemes.  

The remainder of this paper is organized as follows; Section 2 illustrates the related works. Section 3 introduces the 

system model, which includes received power, SNR, Modulation techniques, and RMS delay calculation. Followed by 

section 4, in which results and analysis of different models are presented. Lastly, the paper is concluded and summarized 

in section 5. 

 

3. System Model 

Fig. 1 illustrates fundamental VLC system constituents in a typical room setting with OAs installed on the room's 

ceiling, where the user or device will be at any position in the receiver plane within the room. The room model size is 

typically set as 5 × 5 × 3𝑚, and it represents the room’s length, width, and height, respectively. The transmitted signals 

will reach the receiver end by using a direct link which is termed the line of sight (LOS) link or reflected link and its 

termed as non-line of sight (Non-LOS) link [35]. We have considered the LOS link in the evaluation of this paper. 

The deployment of OAs in the room's ceiling is illustrated in Fig. 2, where four, five, nine, and sixteen OAs models 

are employed, as shown in (a), (b), (c), and (d) respectively. The results of different OAs in the room have been discussed, 

analyzed, and compared in terms of SNR, received power, and BER performances. 
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Fig. 1 - VLC system model. 

 

 
    (a)                                                                 (b) 

 
    (c)                                                                (d) 

 

Fig. 2 - Deployment of OAs on the ceiling of the room (a) four OAs; (b) proposed model (five) OAs [17]; (c) 

nine OAs; (d) sixteen OAs [18] 
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The new proposed model consists of five OAs deployed on the room's ceiling at a height of 3m from the floor and 

2.15m from the receiver plane. Each OA has 2500 LED chips (50 × 50), and the distance between each cell is 1cm. The 

transmitted power per LED chip is 20mw, and the center luminous intensity is 0.73 cd. All these parameters are listed in 

Table 1. 

Table 1 - Simulation parameters I 

Parameters Values 

Room dimension 5 × 5 × 3𝑚 

Transmitted power per LED chip 20[mW] 

Number of LED chips per OA 2500 (50 × 50) 

Semi-angle at half power 70 [Degree] 

Size of OA 0.49 × 0.49 

Central luminous intensity 0.73[cd] 

Height of receiver level 0.85 [m] 

 

The Lambertian emission pattern is assumed as a source of radiation, and the radiation intensity of illuminance at 

the receiving plane is computed according to [37] as : 

𝐼(𝜙) = 𝐼(0)𝑐𝑜𝑠𝑚(𝜙)                                                                                                         (1) 

where 𝜙 and 𝐼(0) are the irradiance angle and center luminous intensity respectively; 𝑚 represents the Lambertian 

radiant order, and 𝜙1

2

 is LEDs semi-angle at half illumination as shown in Equation (2): 

𝑚 =
− 𝑙𝑛 2

𝑙𝑛(𝑐𝑜𝑠 𝜙1
2

)

                                                                                                                (2) 

Thus, horizontal illuminance level (𝐸ℎ𝑜𝑟) for LOS link can be computed as expressed in (3) as 

𝐸ℎ𝑜𝑟 =
𝐼(0)𝑐𝑜𝑠𝑚(𝜙)

𝐷𝑑
2 . 𝑐𝑜𝑠(𝜓)                                                                                             (3) 

where 𝜙, 𝐼(0), and m are defined in Equation (1) and 𝐷𝑑 is the direct distance between OA and receiver. 

Fig. 3 illustrates the behavior of average illuminance versus several semi-angle at half power in the entire room for 

the four models. According to the International Organization for Standardization (ISO), the required illuminance level 

for a typical room model of (5 × 5 × 3𝑚) ranges between 300 to 1500 Lux. The average illuminance of 702.89, 635.61, 

750.09, and 863.65 Lux were obtained for four, five, nine, and sixteen OAs respectively. Therefore, the illuminance result 

of the four models was satisfied with the required illuminance based on ISO and could be used in a typical room 

 

 
 

Fig. 3 - Average illumination distribution of all models in the typical room 
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3.1 Received Power and SNR Calculations 

To evaluate the quality of the VLC communication link, received power and SNR were measured at the receiving 

side. The received power (𝑃𝑟) was computed by utilizing the following expression: 

𝑃𝑟 = 𝐻(0) ∗ 𝑃𝑡                                                                                                                  (4) 

Where 𝑃𝑡 represents the transmitted power of OA; 𝐻(0) is the channel DC gain for LOS link and it is given by: 

𝐻(0) = {

(𝑚+1)𝐴

2𝜋𝐷𝑑
2 𝑐𝑜𝑠𝑚(∅)𝑇𝑠(𝜓)𝑔(𝜓) 𝑐𝑜𝑠(𝜓) , 0 ≤ 𝜓 ≤ 𝜙1

2

0,                                                                          𝜓 > 𝜙1

2

                                                                                     (5)  

𝐷𝑑 is the direct distance from OA to the receiver; whereas A denotes the physical area of the detector at the receiving 

side. The definition of all other parameters was presented in [17], [18]. Moreover, SNR at the receiver side is calculated 

at the presence of shot and thermal noises, and it is given by: 

𝑆𝑁𝑅 =
[𝑅𝑃𝑟]2

𝜎𝑠ℎ𝑜𝑡
2 +𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙

2  
                                                                                                           (6) 

Where R is the responsivity of the receiver; 𝑃𝑟  is received power defined from Equation (4). The 𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙
2  is thermal 

noise variance; 𝜎𝑠ℎ𝑜𝑡
2  refers to shot noise variance; and all the parameters of the following equations were defined 

previously in [17], [18]. The variance of both noises is given as follows: 

𝜎𝑠ℎ𝑜𝑡
2 = 2𝑞[𝑅𝑃𝑟 + 𝐼𝑏𝑔𝐼2]𝐵                                                                                                       (7) 

𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙
2 = 8𝜋𝑘𝑇𝑘ƞ𝐴𝐵2 (

𝐼2

𝐺
+

2𝜋𝛤

𝑔𝑚
ƞ𝐴𝐼3𝐵)                                                                                        (8) 

where 𝑞 is the electronic charge; B refers to equivalent noise bandwidth; 𝐼𝑏𝑔 and 𝐼2 are the current of background 

light and bandwidth factor, respectively; k is Boltzmann constant; 𝑇𝑘 , 𝐴 and ƞ  refer to absolute temperature; PD physical 

area, and fixed capacitance, respectively; G and 𝑔𝑚 are the voltage gain and FET transconductance. 

Parameters listed in Table 2 were used in our analysis. The physical detector area is set to 
1𝑐𝑚2, and the refractive index and optical concentrator gain are 1.5 and 1, respectively. Other relevant parameters used 

are concluded in Table 2. 

Table 2 - Simulation parameters II 

Parameters Values 

Detector physical area 1[𝑐𝑚2] 
Refractive index  1.5 

optical concentrator gain 1 

Reflection coefficient 0.8 

Responsivity of photodiode 0.54 

Bandwidth factor (I2) 0.562 

Absolute temperature 298 [K] 

FET transconductance [30 mS] 

Bandwidth factor (I3) 0.0868 

FET channel noise factor 1.5 

fixed capacitance 112 [pF/cm2] 

Data Rate 30 [Mb/s] 

 

3.2 Modulation Techniques 

In order to improve BER performance, various modulation techniques were implemented over the transmitted signal. 

In this paper, different modulations schemes were discussed which include, non-return-to-zero OOK (NRZ-OOK), 

binary, and quadrature phase-shift keying (BPSK) and (QPSK) [38], respectively. Therefore, BER or the corresponding 

probability of error performance of all three modulation techniques can be calculated by the following expressions: 

   𝐵𝐸𝑅𝑁𝑅𝑍−𝑂𝑂𝐾 =
1

2
𝑒𝑟𝑓𝑐 (

1

2√2
√𝑆𝑁𝑅)                                                                                                (9) 
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   𝐵𝐸𝑅𝐵𝑃𝑆𝐾 =
1

2
𝑒𝑟𝑓𝑐(√𝑆𝑁𝑅)                                                                                                   (10) 

  𝐵𝐸𝑅𝑄𝑃𝑆𝐾 = 𝑒𝑟𝑓𝑐(√𝑆𝑁𝑅) = 2𝐵𝐸𝑅𝐵𝑃𝑆𝐾                                                                                     (11) 

3.3 RMS Delay Spread 

The (RMS) root means square of delay spread has been employed to investigate interferences of adjacent OAs effects 

on the channel. Thus, in receiving end, the overall received power can be computed as follow: 

𝑃𝑟𝑇 = ∑ 𝑃𝑑,𝑖

𝑀

𝑖=1

+ ∑ 𝑃𝑟𝑒𝑓,𝑗

𝑁

𝑗=1

                                                                                                                     (12) 

Where M refers to the number of OA's direct links that are mounted on the ceiling to the receiver; N denotes reflected 

away links from the wall to the receiver end number; 𝑃𝑑,𝑖 relates to ith direct link received power; 𝑃𝑟𝑒𝑓,𝑗 is the resulting 

received power from jth reflected links. Hence, RMS delay and excess delay's mean are given as follows [37]: 

𝜇 =
∑ 𝑃𝑑,𝑖𝑡𝑑,𝑖 + ∑ 𝑃𝑟𝑒𝑓,𝑗𝑡𝑟𝑒𝑓,𝑗

𝑁
𝑗=1

𝑀
𝑖=1

𝑃𝑟𝑇

                                                                                                        (13) 

Accordingly, the RMS delay spread can be computed by: 

𝐷𝑟𝑚𝑠 = √𝜇2 − (𝜇)2                                                                                                                              (14) 

Where 

𝜇2 =
∑ 𝑃𝑑,𝑖𝑡𝑑,𝑖

2 + ∑ 𝑃𝑟𝑒𝑓,𝑗𝑡𝑟𝑒𝑓,𝑗
2𝑁

𝑗=1
𝑀
𝑖=1

𝑃𝑟𝑇

                                                                                                            (15) 

4. Results and Analyses 

Various parameters were investigated to evaluate each proposed model performance, in which all four models 

satisfied illumination requirements, as shown in Fig. 3. 

Moreover, received power distribution at semi-angle at half power of 70° is shown in Fig. 4, where the average 

received power values of 0.9625, 2.458, 1.6405, and 0.7227 dBm were achieved for four, five, nine, and sixteen OAs, 

respectively. In our proposed five OAs model, a better average received power was achieved with fluctuations between 

-1.286 and 5.9668 dBm, which represents the highest maximum and minimum received power, and this is due to the use 

of optimized FOV that presented in [17]. Further, the average, maximum, and minimum received power of each model 

are summarized in Table 3. 

 

     
                                        (a)                                                                                 (b) 
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                                       (c)                                                                                  (d) 

 

Fig. 4 - Received power distribution of (a) four, (b) five, (c) nine, and (d) sixteen OAs models. 

 

Furthermore, Fig. 5 demonstrates the SNR distribution of all four models, in which average SNR values of 72.18, 

74.58, 73.53, and 71.11 dB were achieved for four, five, nine, and sixteen OAs cases, respectively. Hence, five OAs have 

acquired the highest average, maximum, and minimum SNR compared to other models. Lastly, SNR values of all models 

are listed in Table 3. 

Table 3 - Received power and SNR performances of the four models 

Parameters Four OAs Five OAs Nine OAs Sixteen OAs 

 

Received power (dBm) 

Maximum 2.209 5.9668 3.9491 2.1897 

Minimum -2.3986 -1.286 -1.9629 -2.2683 

Average 0.9625 2.458 1.6405 0.7227 

 

SNR (dB) 

Maximum 74.6688 81.5945 78.1483 74.0418 

Minimum 65.4544 67.0911 66.3258 65.1267 

Average 72.1761 74.5782 73.5319 71.1081 

 

     
                                  (a)                                                                                     (b) 

    
                                 (c)                                                                                      (d) 

 

Fig. 5 - SNR distribution of (a) four; (b) five; (c) nine; (d) sixteen OAs models 
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Fig. 6 shows the behavior of minimum SNR distribution and received power with respect to various semi-angle at 

half power in the entire room. Based on results, four, five, and nine OAs, small semi-angle at half power had the lowest 

received power and SNR levels, whereas received power increased as the semi-angle at half power increased. However, 

the sixteen OAs had better-received power compared to other models at small semi-angle at half power, and it slightly 

decreased as the semi-angle at half power increased. Results display that our proposed five OAs had better performance 

compared to other models, and the distribution of received power and SNR was fair for all models at semi-angle at half 

power of more than 40°, because for values beyond 40° the whole room will be approximately covered and any increase 

doesn’t significantly affect in the performance. 

 

   
                                               (a)                                                                                      (b) 

 

Fig. 6 - Distribution of minimum (a) received power; (b) SNR of all models versus various semi-angle at half 

power 

 

Alternatively, in terms of BER performance models were also evaluated with various modulation techniques that 

employed NRZ-OOK, BPSK and QPSK schemes as shown in Fig. 7. Based on tabulated results in Table 4, measured 

BER levels of 5.16E-23, 8.57E-13, 1.63E-04, and 0.0092 were obtained utilizing BPSK modulation for four, five, nine, 

and sixteen OAs respectively, which had the best BER performance compared with other modulation schemes. Moreover, 

BER performance behavior under various modulations was also investigated, and results indicate that it improved with 

the increase of the semi-angle at half power increase, and it became slightly fair at angles above 40°. Therefore, based 

on BER performance, a lower number of OAs in the room needs more power compared to larger OAs numbers. However, 

it has significantly improved the BER and RMS delay due to its high transmitted power and safer distance between OAs. 

On the other hand, larger OAs distributions cause severe adjacent interference, which degrades performance and produces 

higher BER and RMS delay levels.  

 

    
                                              (a)                                                                                      (b) 
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(c) 

 

Fig. 7 - BER performance of (a) NRZ-OOK; (b) BPSK; (c) QPSK modulations versus various semi-angle at 

half power 

 

The RMS delay spread of all four models is shown in Fig. 8 at a semi-angle at half power of 70°. Values of 1.0302, 

0.1375, 0.5039, and 1.2879 ns were achieved for four, five, nine, and sixteen OAs, respectively. It is noted that our new 

proposed model of five OAs had the lowest RMS delay compared with other models. Moreover, average RMS delay 

behavior under various semi-angle at half power is shown in Fig. 9, in which it increases with the increase in semi-angle 

at half power values. The deployment of a massive number of OAs in the room will cause severe interference that causes 

a delay on the receiving end. Thus, RMS delay could be decreased by choosing an appropriate number of OAs, to satisfy 

the required illuminance as well as establishing a reliable communication link. Moreover, five OAs models utilized 2500 

LED chips per OA instead of 3600 LED chips per OA at the four OAs model, which results in OAs size reduction, 

therefore, produced the lowest interference or RMS delay over the existing four OAs model. 

 

      
                                 (a)                                                                                        (b) 

    
                                (c)                                                                                        (d) 

 

Fig. 8 - RMS delay spread distribution for (a) four; (b) five; (c) nine; (d) sixteen OAs models 
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Fig. 9 - Average RMS delay spread versus different semi-angle at half power 

 

BER performance for different modulation techniques, as well as RMS delay spread, are summarized in Table 4. 

BPSK shows a better BER performance over NRZ-OOK and QPSK schemes. Besides, five OAs achieved an overall 

better performance in terms of all evaluated parameters over other OAs models. Therefore, it could be employed in a 

typical room model to acquire optimum performance. 

Table 4 - Performance of BER and RMS delay spread for the four models  

 Four OAs Five OAs Nine OAs Sixteen OAs 

 

BER 

NRZ-OOK 3.06E-13 1.29E-07 0.0054 0.0477 

BPSK 5.16E-23 8.57E-13 1.63E-04 0.0092 

QPSK 1.03E-22 1.71E-12 3.26E-04 0.0184 

RMS delay spread (ns) 1.0302 0.1375 1.2879 0.5039 

 

5. Conclusion 

This paper presents an investigation of different OAs deployment models in a typical room, with the intent to find 

the optimal number of OAs that could be employed for optimum illumination and communication performances. Thus, 

various contemporary VLC system models that consist of four, nine, and sixteen OAs were studied with respect to several 

previously discussed parameters. In this paper, we have evaluated the new model of five OAs and analyzed its results in 

addition to a comprehensive comparison with the previous models in terms of received power, illumination, SNR, and 

RMS delay spread. Besides, the employment of different modulation techniques that included NRZ-OOK, BPSK, and 

QPSK to acquire an improved BER performance. Best results of 5.16E-23, 8.57E-13, 1.63E-04, and 0.0092 BER levels 

were obtained when BPSK was utilized for four, five, nine, and sixteen OAs models, respectively. Thereby obtaining 

better BER performance for four and five OAs models that fulfill reliable communication link requirements of a BER 

value that is less than 10−6. Based on the previous investigations of new and previous OAs models, it is noted that it is 

impossible to achieve an overall optimal system performance by optimizing all relevant parameters. This is due to the 

pre-existing tradeoffs between some parameters (i.e. OAs numbers vs RMS delay) which makes it difficult to improve 

an aspect without degrading the others. Therefore, based on all models results comparisons, our new model of five OAs 

has produced a better performance for all studied parameters with an acceptable illumination performance. Future 

research will consider advanced modulation techniques and power consumption reduction mechanisms as means for 

further performance improvements.  
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