88 research outputs found

    Poison Frog Colors Are Honest Signals Of Toxicity, Particularly For Bird Predators

    Get PDF
    Antipredator defenses and warning signals typically evolve in concert. However, the extensive variation across taxa in both these components of predator deterrence and the relationship between them are poorly understood. Here we test whether there is a predictive relationship between visual conspicuousness and toxicity levels across 10 populations of the color-polymorphic strawberry poison frog, Dendrobates pumilio. Using a mouse-based toxicity assay, we find extreme variation in toxicity between frog populations. This variation is significantly positively correlated with frog coloration brightness, a viewer-independent measure of visual conspicuousness (i.e., total reflectance flux). We also examine conspicuousness from the view of three potential predator taxa, as well as conspecific frogs, using taxon-specific visual detection models and three natural background substrates. We find very strong positive relationships between frog toxicity and conspicuousness for bird-specific perceptual models. Weaker but still positive correlations are found for crab and D. pumilio conspecific visual perception, while frog coloration as viewed by snakes is not related to toxicity. These results suggest that poison frog colors can be honest signals of prey unpalatability to predators and that birds in particular may exert selection on aposematic signal design.Integrative Biolog

    Sexual conflict over breeding substrate causes female expulsion and offspring loss in a cichlid fish

    Get PDF
    Females of the Lake Tanganyika cichlid Lamprologus callipterus exclusively breed in empty snail shells that males collect in their territories. Male-male competition for shells is severe, leading to frequent shell stealing and territory takeover. As a consequence, males have breeding females in their shells that spawned with competitors. In this field study, we investigated both naturally occurring and experimentally induced encounters of territorial males with females that had spawned with other males. We found that the breeding success of females that were taken over by a different male was significantly reduced. Behavioral observations after experimental shell relocation further showed that males recognized females that they had not spawned with: males directed more exploration and manipulation behavior toward such shells compared with controls. Reoccupation rate of emptied experimental shells was significantly higher than that of unmanipulated empty shells. This indicates that shell stealing and nest takeover, followed by female expulsion, contribute to the reproductive success of L. callipterus males. We also found that female mate choice reduces expulsion risk: females preferred to mate with large males, and male size correlated with dominance. We conclude that the limited availability of breeding substrate is a key determinant of both intrasexual competition and intersexual conflict in this specie

    Lack of alignment across yeast-dependent life-history traits may limit <i>Drosophila melanogaster</i> dietary specialization

    Get PDF
    Heterogeneity in food resources is a major driver of local adaptation and speciation. Dietary specialization typically involves multiple life-history traits and may thus be limited by the extent to which these traits adapt in concert. Here, we use Drosophila melanogaster, representing an intermediate state in the generalist-specialist continuum, to explore the scope for dietary specialization. D. melanogaster has a close association with yeast, an essential but heterogeneous food resource. We quantify how different D. melanogaster strains from around the globe respond to different yeast species, across multiple yeast-dependent life-history traits including feeding, mating, egg-laying, egg development and survival. We find that D. melanogaster strains respond to different yeast species in different ways, indicating distinct fly strain-yeast interactions. However, we detect no evidence for trade-offs: fly performance tends to be positively rather than negatively correlated across yeast species. We also find that the responses to different yeast species are not aligned across traits: different life-history traits are maximized on different yeast species. Finally, we confirm that D. melanogaster is a resource generalist: it can grow, reproduce and survive on all the yeast species we tested. Together, these findings provide a possible explanation for the limited extent of dietary specialization in D. melanogaster.</p

    Differential survival between visual environments supports a role of divergent sensory drive in cichlid fish speciation

    Get PDF
    Identifying the selective forces that initiate ecological speciation is a major challenge in evolutionary biology. Sensory drive has been implicated in speciation in various taxa, largely based on phenotype-environment correlations and signatures of selection in sensory genes. Here, we present a reciprocal transplant experiment revealing species differences in performance in alternative visual environments, consistent with speciation by divergent sensory drive. The closely related cichlids Pundamilia pundamilia and Pundamilia nyererei inhabit different visual environments in Lake Victoria and show associated differences in visual system properties. Mimicking the two light environments in the laboratory, we find a substantial reduction in survival of both species when reared in the other species’ visual environment. This implies that the observed differences in Pundamilia color vision are indeed adaptive and substantiates the implicit assumption in sensory drive speciation models that divergent environmental selection is strong enough to drive divergence in sensory properties

    Seven questions on the chemical ecology and neurogenetics of resource-mediated speciation

    Get PDF
    Adaptation to different environments can result in reproductive isolation between populations and the formation of new species. Food resources are among the most important environmental factors shaping local adaptation. The chemosensory system, the most ubiquitous sensory channel in the animal kingdom, not only detects food resources and their chemical composition, but also mediates sexual communication and reproductive isolation in many taxa. Chemosensory divergence may thus play a crucial role in resource-mediated adaptation and speciation. Understanding how the chemosensory system can facilitate resource-mediated ecological speciation requires integrating mechanistic studies of the chemosensory system with ecological studies, to link the genetics and physiology of chemosensory properties to divergent adaptation. In this review, we use examples of insect research to present seven key questions that can be used to understand how the chemosensory system can facilitate resource-mediated ecological speciation in consumer populations

    Contribution of opsins and chromophores to cone pigment variation across populations of Lake Victoria cichlids

    Get PDF
    Adaptation to heterogeneous sensory environments has been implicated as a key parameter in speciation. Cichlid fish are a textbook example of divergent visual adaptation, mediated by variation in the sequences and expression levels of cone opsin genes (encoding the protein component of visual pigments). In some vertebrates including fish, visual sensitivity is also tuned by the ratio of Vitamin A1 /A2 -derived chromophores (i.e. the light-sensitive component of the visual pigment, bound to the opsin protein), where higher proportions of A2 cause a more red-shifted wavelength absorbance. Here, we explore variation in chromophore ratios across multiple cichlid populations in Lake Victoria, using as a proxy the expression of the gene Cyp27c1, which has been shown to regulate conversion of Vitamin A1 - into A2 in several vertebrates.We focus on sympatric Pundamilia cichlids, where species with blue or red male coloration co-occur at multiple islands, but occupy different depths and consequently different visual habitats. In the red species, we found higher cyp27c1 expression in populations from turbid waters than from clear waters, but there was no such pattern in the blue species. Across populations, differences between the sympatric species in cyp27c1 expression had a consistent relationship with species differences in opsin expression patterns, but the red/blue identity reversed between clear and turbid waters. To assess the contribution of heritable versus environmental causes of variation, we tested whether light manipulations induce a change in cyp27c1 expression in the laboratory. We found that cyp27c1 expression was not influenced by experimental light conditions, suggesting that the observed variation in the wild is due to genetic differences. However, compared to other cichlid species, cyp27c1 is expressed at very low levels in Pundamilia suggesting that it may not be relevant for visual adaptation in this species. Conclusively, establishing the biological importance of this variation requires testing of actual A1 /A2 ratios in the eye, as well as its consequences for visual performance. This article is protected by copyright. All rights reserved

    Visual system plasticity is differently mediated by cone opsin expression and chromophore composition in closely related cichlid species

    Get PDF
    Phenotypic plasticity allows organisms to rapidly adjust to environmental changes. Cichlid fish inhabit a wide range of light environments and show a large diversity in visual system properties, which makes them a good model system to address the role of phenotypic plasticity in visual adaptation. Cichlid retinal cone pigments consist of opsin proteins bound to Vitamin A1 or A2-derived chromophores. Plasticity in expression has been shown for cichlid opsin genes, but less is known about the contribution of cyp27c1, the enzyme that converts Vitamin A1 into A2,. Here, we studied both opsin and cyp27c1 expression patterns for three closely related cichlid species from different visual habitats in Lake Victoria, across different light treatments. We found differences in cyp27c1 as well as in opsin expression patterns between the three species. Experimental light treatments affected the developmental trajectory of cyp27c1 expression in one species and opsin expression in all three species. Within each species, we found large individual variation in cyp27c1 expression levels and no consistent association with opsin expression levels. These results indicate that visual system plasticity of even closely related species can be differentially mediated by opsin and cyp27c1 expression, possibly associated with species differences in visual niche

    Female preference for male color is necessary and sufficient for assortative mating in 2 cichlid sister species

    Get PDF
    One fish, two fish, red fish, blue fish: in two cichlid fish species beauty is in the eye of the beholder. Females choose mates based on colour, blue or red, and chemical cues but only colour triggers divergent female preferences. Reliance on one prime male characteristic may have facilitated speciation in this species-pair, but in murky waters the opportunity for visual communication is dim and the fate of the two species uncertai

    Developmental effects of environmental light on male nuptial coloration in Lake Victoria cichlid fish

    Get PDF
    Background Efficient communication requires that signals are well transmitted and perceived in a given environment. Natural selection therefore drives the evolution of different signals in different environments. In addition, environmental heterogeneity at small spatial or temporal scales may favour phenotypic plasticity in signaling traits, as plasticity may allow rapid adjustment of signal expression to optimize transmission. In this study, we explore signal plasticity in the nuptial coloration of Lake Victoria cichlids, Pundamilia pundamilia and Pundamilia nyererei. These two species differ in male coloration, which mediates species-assortative mating. They occur in adjacent depth ranges with different light environments. Given the close proximity of their habitats, overlapping at some locations, plasticity in male coloration could contribute to male reproductive success but interfere with reproductive isolation. Methods We reared P. pundamilia, P. nyererei, and their hybrids under light conditions mimicking the two depth ranges in Lake Victoria. From photographs, we quantified the nuptial coloration of males, spanning the entire visible spectrum. In experiment 1, we examined developmental colour plasticity by comparing sibling males reared in each light condition. In experiment 2, we assessed colour plasticity in adulthood, by switching adult males between conditions and tracking coloration for 100 days. Results We found that nuptial colour in Pundamilia did respond plastically to our light manipulations, but only in a limited hue range. Fish that were reared in light conditions mimicking the deeper habitat were significantly greener than those in conditions mimicking shallow waters. The species-specific nuptial colours (blue and red) did not change. When moved to the opposing light condition as adults, males did not change colour. Discussion Our results show that species-specific nuptial colours, which are subject to strong divergent selection by female choice, are not plastic. We do find plasticity in green coloration, a response that may contribute to visual conspicuousness in darker, red-shifted light environments. These results suggest that light-environment-induced plasticity in male nuptial coloration in P. pundamilia and P. nyererei is limited and does not interfere with reproductive isolation

    Visual adaptation and microhabitat choice in Lake Victoria cichlid fish

    Get PDF
    When different genotypes choose different habitats to better match their phenotypes, genetic differentiation within a population may be promoted. Mating within those habitats may subsequently contribute to reproductive isolation. In cichlid fish, visual adaptation to alternative visual environments is hypothesized to contribute to speciation. Here, we investigated whether variation in visual sensitivity causes different visual habitat preferences, using two closely related cichlid species that occur at different but overlapping water depths in Lake Victoria and that differ in visual perception (Pundamilia spp.). In addition to species differences, we explored potential effects of visual plasticity, by rearing fish in two different light conditions: broad-spectrum (mimicking shallow water) and red-shifted (mimicking deeper waters). Contrary to expectations, fish did not prefer the light environment that mimicked their typical natural habitat. Instead, we found an overall preference for the broad-spectrum environment. We also found a transient influence of the rearing condition, indicating that the assessment of microhabitat preference requires repeated testing to control for familiarity effects. Together, our results show that cichlid fish exert visual habitat preference but do not support straightforward visual habitat matching.</p
    • …
    corecore