276,342 research outputs found

    Nearly Mass-Degenerate Majorana Neutrinos: Double Beta Decay and Neutrino Oscillations

    Get PDF
    Assuming equal tree-level Majorana masses for the standard-model neutrinos, either from the canonical seesaw mechanism or from a heavy scalar triplet, I discuss how their radiative splitting may be relevant to neutrinoless double beta decay and neutrino oscillations.Comment: 12 pages, including 4 figures, talk at NANP9

    Five-dimensional metric f(R)f(R) gravity and the accelerated universe

    Full text link
    The metric f(R)f(R) theories of gravity are generalized to five-dimensional spacetimes. By assuming a hypersurface-orthogonal Killing vector field representing the compact fifth dimension, the five-dimensional theories are reduced to their four-dimensional formalism. Then we study the cosmology of a special class of f(R)=αRmf(R)=\alpha R^m models in a spatially flat FRW spacetime. It is shown that the parameter mm can be constrained to a certain range by the current observed deceleration parameter, and its lower bound corresponds to the Kaluza-Klein theory. It turns out that both expansion and contraction of the extra dimension may prescribe the smooth transition from the deceleration era to the acceleration era in the recent past as well as an accelerated scenario for the present universe. Hence five-dimensional f(R)f(R) gravity can naturally account for the present accelerated expansion of the universe. Moreover, the models predict a transition from acceleration to deceleration in the future, followed by a cosmic recollapse within finite time. This differs from the prediction of the five-dimensional Brans-Dicke theory but is in consistent with a recent prediction based on loop quantum cosmology.Comment: 14 pages, 9 figures; Version published in PR

    A first step to accelerating fingerprint matching based on deformable minutiae clustering

    Get PDF
    Fingerprint recognition is one of the most used biometric methods for authentication. The identification of a query fingerprint requires matching its minutiae against every minutiae of all the fingerprints of the database. The state-of-the-art matching algorithms are costly, from a computational point of view, and inefficient on large datasets. In this work, we include faster methods to accelerating DMC (the most accurate fingerprint matching algorithm based only on minutiae). In particular, we translate into C++ the functions of the algorithm which represent the most costly tasks of the code; we create a library with the new code and we link the library to the original C# code using a CLR Class Library project by means of a C++/CLI Wrapper. Our solution re-implements critical functions, e.g., the bit population count including a fast C++ PopCount library and the use of the squared Euclidean distance for calculating the minutiae neighborhood. The experimental results show a significant reduction of the execution time in the optimized functions of the matching algorithm. Finally, a novel approach to improve the matching algorithm, considering cache memory blocking and parallel data processing, is presented as future work.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A New Solution of the Yang-Baxter Equation Related to the Adjoint Representation of UqB2U_{q}B_{2}

    Full text link
    A new solution of the Yang-Baxter equation, that is related to the adjoint representation of the quantum enveloping algebra UqB2U_{q}B_{2}, is obtained by fusion formulas from a non-standard solution.Comment: 16 pages (Latex), Preprint BIHEP-TH-93-3

    Design, Prototyping, and Testing of a Novel Flowpath with an Array of Six 3D Matrix Vitvo Bioreactors for the NASA Bioculture System

    Get PDF
    The NASA Bioculture System is an advanced cell culture closed-loop system containing highly automated flowpaths designed to conduct long term biology experiments on ISS with earth remote controllable medium flow, temperature, gas composition, medium exchange, cell sampling and fixation. This technology was already demonstrated with successful cardiomyocyte and osteocyte cultures experiments onboard the ISS and is now supporting NASA PI science. The Bioculture System, however, can only support 10 cassettes with disposable flowpaths, each containing a single hollow fiber bioreactor with a culture capacity of about 2ml. This constraint not only severely limits the number of investigators that can conduct experiments in space, but also subjects the experiments to limitations in the number of replicates and conditions that can be studied. To address these limitations, we sought a novel design solution to maximize the number of separate bioreactor cultures and volume that can be conducted simultaneously. To this end we designed, prototyped, and are now testing a six-Vitvo 3D Matrix 2ml bioreactor insert that replaces the conventional Bioculture System hollow fiber bioreactor. This design will allow the Bioculture System to support up to 60 different bioreactors and samples at once. Specifically, the novel gas-tight containment housing insert contains six COTS Rigenerand VITVO bioreactors stacked on each side of a heat sink powered by the existing heating element and pair of temperature sensors. Medium will be distributed into each bioreactor's cell-free chamber via its built-in Luer connector, then across the 3D matrix to the cell chamber, dissipating laminar flow and limiting fluid shear stresses that might mechanostimulate cell cultures. Gas (5% CO2 in air) will be supplied directly to the bioreactor gas-tight housing for exchange via the bioreactor flat-surface gas-permeable membranes, eliminating the need for the existing Bioculture System cassette oxygenator. If successfully implemented on ISS, this new multi-bioreactor insert for the Bioculture System has the potential to make real-time cell science experimentation in space more efficient and accessible to more investigators

    Levinson's theorem for the Schr\"{o}dinger equation in two dimensions

    Full text link
    Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically symmetric potential in two dimensions is re-established by the Sturm-Liouville theorem. The critical case, where the Schr\"{o}dinger equation has a finite zero-energy solution, is analyzed in detail. It is shown that, in comparison with Levinson's theorem in non-critical case, the half bound state for PP wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of PP wave at zero energy to increase an additional Ď€\pi.Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email: [email protected], [email protected]

    Locking classical information

    Full text link
    It is known that the maximum classical mutual information that can be achieved between measurements on a pair of quantum systems can drastically underestimate the quantum mutual information between those systems. In this article, we quantify this distinction between classical and quantum information by demonstrating that after removing a logarithmic-sized quantum system from one half of a pair of perfectly correlated bitstrings, even the most sensitive pair of measurements might only yield outcomes essentially independent of each other. This effect is a form of information locking but the definition we use is strictly stronger than those used previously. Moreover, we find that this property is generic, in the sense that it occurs when removing a random subsystem. As such, the effect might be relevant to statistical mechanics or black hole physics. Previous work on information locking had always assumed a uniform message. In this article, we assume only a min-entropy bound on the message and also explore the effect of entanglement. We find that classical information is strongly locked almost until it can be completely decoded. As a cryptographic application of these results, we exhibit a quantum key distribution protocol that is "secure" if the eavesdropper's information about the secret key is measured using the accessible information but in which leakage of even a logarithmic number of key bits compromises the secrecy of all the others.Comment: 32 pages, 2 figure
    • …
    corecore