
A First Step to Accelerating Fingerprint
Matching based on Deformable Minutiae

Clustering ?

A.J. Sanchez1[0000−0001−6743−3570], L.F. Romero1[0000−0003−2959−2030],
S. Tabik2[0000−0003−4093−5356], M.A. Medina-Pérez3[0000−0003−4511−2252], and F.
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Abstract. Fingerprint recognition is one of the most used biometric
methods for authentication. The identification of a query fingerprint re-
quires matching its minutiae against every minutiae of all the fingerprints
of the database. The state-of-the-art matching algorithms are costly, from
a computational point of view, and inefficient on large datasets. In this
work, we include faster methods to accelerating DMC (the most accurate
fingerprint matching algorithm based only on minutiae). In particular,
we translate into C++ the functions of the algorithm which represent the
most costly tasks of the code; we create a library with the new code and
we link the library to the original C# code using a CLR Class Library
project by means of a C++/CLI Wrapper. Our solution re-implements
critical functions, e.g., the bit population count including a fast C++

PopCount library and the use of the squared Euclidean distance for cal-
culating the minutiae neighborhood. The experimental results show a
significant reduction of the execution time in the optimized functions of
the matching algorithm. Finally, a novel approach to improve the match-
ing algorithm, considering cache memory blocking and parallel data pro-
cessing, is presented as future work.

Keywords: Fingerprint Recognition · Cache Optimization · Language
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1 Introduction

The task of fingerprint recognition has been widely studied in the recent years.
The reason why this human characteristic is very popular to identify people lies
in the fact that fingerprints are unique and do not change over time. That is,
there are not two people with the same fingerprint, making them a perfect recog-
nition feature. The major characteristics of fingerprints, based on ridge features,
are known as minutiae and represent ridge endings and bifurcations as stan-
dard. Thereby, in almost all most accurate matching algorithms, the comparison
method relies on the minutiae details computation carried out in the CPU [1],
while other approaches perform the calculations by using GPUs [2, 3].

Fingerprint matching algorithms are usually implemented using high-level pro-
gramming languages such as C#, Java or Python [4]. This choice is made due to
the large amount of programming tools that are available to make the program-
ming work easier for the researcher. Nevertheless, the mayor drawback from this
languages and similar ones consists in the lower execution speed of the code,
in contrast with lower-level programming languages. For example, in C# pro-
gramming language, when the file is compiled, the code is firstly translated into
an intermediate managed language named Intermediate Language (IL) and then
into machine code, during runtime, by the Common Language Runtime (CLR)
tool from the .NET framework. This is why this type of code is also known as
managed language, causing execution overhead.

This paper focuses on currently one of the most accurate fingerprint matching
algorithms, based on minutiae processing, patented by Medina-Pérez et al. [5, 6]
and will be referred as “DMC” in the rest of the paper. This matching method
was initially developed using C# for its implementation and uses the following
three algorithms:

1. The Minutia Cylinder-Code method [7] which is based on 3D data structures,
called Binary Cylinder Codes, built from minutiae positions and angles from
merging local structures [8]. DMC uses this minutia representation to per-
form the matching processing.

2. The Minutiae Discrimination method [9] that calculates a quality value for
each minutia based on the minutiae direction consistency inside its minutiae
neighborhood.

3. The Deformable Minutiae Clustering method [5, 10] which is used to avoid
data loss due to fingerprint deformation. Similarity results are obtained by
adding the weights of each matched minutiae pair from merging the clusters
that are similar. In addition, the weight of each minutiae pair (q, p) is cal-
culated by evaluating the minutiae from the matched cluster in which (q, p)
is the centre. Statistical outcomes are obtained based on the performance
evaluation proposed by Cappelli et al. [11].

We propose two techniques to accelerate the DMC matching algorithm in CPU.
First, the profile of the matching algorithm is obtained to determine the high-



est computational cost functions. Afterwards, we apply novel optimizations by
including a CLR Class Library project to work as a linker between the C# code,
and a C++ Library where the DMC matching algorithm is actually executed.
Focusing on the improvements, we optimize the bit population count operation
performed within Minutia Cylinder-Code algorithm and the minutiae direction
consistency algorithm from the Minutiae Discrimination method. Moreover, a
future parallel approach to optimize the DMC algorithm is also proposed taking
into account matching decomposition [12].

This paper is organized as follows. Section 2 introduces the structure of the
DMC matching algorithm along with its profiling outcomes. Section 3 describes
the optimization techniques performed on the original DMC matching algorithm.
Section 4 presents the experimental results. Section 5 proposes a future approach
to enhance matching algorithm execution. Finally, Section 6 discusses the result
of this paper and future work.

2 DMC structure and profiling

The DMC fingerprint matching algorithm was developed from merging three
independent matching methods whose procedures can be summarized as follows:

00001110001100001100….     1280 bit  ….0001011011100011

01110011100000010100….                          ….0001100010001000 

Minutia t in template fingerprint T

Minutia q in query fingerprint Q

Binary representation of each minutia and its neighbor ones

10000010010011100111….                          .…1111000110010100

XNOR

Bit population count
(used to obtain matching score)

( Q,T )    fingerprints database∈

Fig. 1. Example of the bit population count operation used in the first step of the
matching algorithm. The set bits, resulted from the XNOR operation performed on
two minutiae descriptors, are counted and used to calculate the minutiae matching
score.

1. Let Q and T be the minutiae sets of query and template fingerprints from a
particular database. Each minutia q ∈ Q is compared to all minutiae t ∈ T
based on their minutia descriptor. In our case study, the minutia descriptor
is an array of 1280 bits which stores the positions and angles of all minutiae



inside a circumference of radius r, centered on the selected minutia. Thus,
two similar minutiae should have a large amount of bits with same position
and value inside both minutia descriptors, so that if the XNOR operation
is done between them as it is shown in Figure 1, it will result in a new
vector with one bits in the concurring positions. Therefore, a function cited
as PopCount is necessary to calculate the number of set bits, which is then
used to obtain a similarity value between minutiae. Each matching minutiae
pairs (q, t) is then included inside a set of local matching minutiae pairs (A)
and sorted by its similarity value.

2. For each minutia q ∈ Q, a quality value is computed relying on the minutiae
direction consistency of all minutiae inside its neighborhood, and prior to
achieve this goal, it is necessary to compute the three minutiae closest to
the selected one by means of a function named as UpdateNearest. Moreover,
the same procedure is performed on each minutia t ∈ T . Finally, two sets
containing all minutiae from each fingerprint and their particular quality
value are obtained.

3. From the sorted A list, clusters of matching minutiae pairs are determined
for each pair (q, t), along with a weight value which is obtained taking into
account the matched minutiae pairs inside the matched cluster in which
(q, t) is located in the centre. Then, all clusters inside both fingerprints are
merged to find global matching minutiae pairs. Afterwards, a new search is
performed, focusing on each minutia q ∈ Q and t ∈ T , using the Thin Plate
Spline method to find new matching minutiae pairs [13], which could have
been discarded in the previous algorithms due to deformations.

Table 1. Call tree performance profiling of the original DMC where the functions
are listed by the collected CPU exclusives samples in descending order. BBC denotes
Binary Cylinder-Code and DMC-BCC.Match the main function in which the DMC
matching algorithm is executed. The functions in bold are located within DMC whereas
the other functions are native tools from .NET Framework.

Function Name Inclusive Samples Exclusive Samples

clr.dll 2094 2094
mscorlib.ni.dll 1685 1187
Map 1242 358
UpdateNearest 315 231
DMC-BCC.Match 6193 209
MtiaPairComparer.Compare 381 205
BinaryCylinderCode.Match 309 189
DMC-BCC.MatchMinutiae 281 107
BCC.PopCount 95 95

Once the matching algorithm process has been studied, the next target consists
in determining which functions are the most computationally expensive inside
the four steps already mentioned. Thus, a thorough analysis of the original DMC
implementation needs to be made, so the Performance Profiler Tools from Visual



Studio 2017 is used to obtain two types of outcomes: inclusive and exclusive
samples from the CPU. In our case, the exclusive samples are used to identify the
functions with the highest computing lines of code because it only takes account
of the samples obtained inside the function and not the ones that are called
within it, representing the bottlenecks of the matching algorithm. Table 1 shows
the functions with the highest computing load based on the CPU exclusives
samples. Highlighted function names are functions which are situated inside the
matching algorithm, while the rest of functions are tools used by the .NET
Framework. From this list, our research will be focused on the UpdateNearest
and PopCount functions due to the high number of exclusive samples that they
have obtained from the profiling in contrast with the few amount of lines of code
that they contains. In the next section, novel optimizations performed over this
two functions will be presented.

3 Software optimizations

(1) DoComparisons() (3) FingerprintGetLocalMatchingMtiae()        (5) ComputeMtiaQuality()  

(2) Matcher.Match() (4) return reducedMatchingPairs        (6) UNC.ComputeMtiaQualityC()   

.NET Framework 
Class Library

.NET Framework 
Class Library

Source C# DMC projectSource C# DMC project

CLR Class LibraryCLR Class Library

C++/CLI WrapperC++/CLI Wrapper

C++ LibraryC++ Library

Unmanaged C++Unmanaged C++

(1)

(2)

(3)

(4)

(5)

(6)
(7)

Fig. 2. Schematic structure of the modified DMC matching algorithm which includes
a CLR Class Library and an unmanaged C++ Library where the fingerprint matching
algorithm is performed.

Regarding the DMC algorithm, it was implemented using C# along .NET Frame-
work 4 and hence, the first step constitutes the translation of the matching algo-
rithm, which includes the functions previously determined from the profiling, to
an unmanaged and lower-level programming language preserving the structure
of the original solution. Therefore, C++ was chosen to replace C# as the pro-
gramming language owing to its better performance and the fact that it is also



an Object-Oriented Programming (OOP) language which results in less com-
patibility issues. Then, a connection between the original C# project and the
new C++ library needed to be established in order to share the necessary data
between them and hence, two .NET framework tools of interoperability were
tested: Platform Invoke using extern “C” methods [14] and a C++/CLI Wrap-
per [15]. Both strategies speed up the part of the code which is translated into
C++, however, the second method enables objects creation, name-spaces usage,
and passing values, and it also enables the assembly along with managed codes.

Figure 2 shows the modified DMC algorithm using the C++/CLI Wrapper, where
a CLR Class Library project and a C++ Library are included. The first one is
written using C++/CLI code which provides several .NET Framework tools for
working with managed and unmanaged memory. Thus, all the fingerprints data
loaded inside the C# managed code can be passed as arguments and stored
within the CLR Class Library with few transformations (1). Then, this data
can be easily exported to the unmanaged C++ Library (2) simply by calling the
functions defined inside the last one. Afterwards, the C++ library executes the
optimized matching algorithm, which includes the three main processes: Minu-
tia Cylinder-Code Creation (3), Minutia Quality Computation (4) and Clustering
Computation and Merging (5). Finally, all the results achieved are returned to
the CLR Class Library project first (6) and then, to the C# project (7).

Regarding the first step of the matching algorithm, the bit population count
procedure is needed to compute the similarity value between minutiae. This bit
operation is also known as pop count and define the action of calculating the
number of set bits from a certain word. This technique is implemented in the
PopCount function by using a SWAR (SIMD Within A Register) method. This
technique deals with counting bits of duos to afterwards, add the duo-counts
to a four-bit aggregation and then bytes inside a 64-bit register, to finally sum
all bytes together. Although this algorithm is known for a good performance,
we wanted to implement the best approach for the bit population count based
on the computer characteristics where the DMC fingerprint matching algorithm
was running. Therefore, the fast C++ bit population count library developed by
Wojciech Mula et al. [16] was implemented, which chooses the best algorithm
depending on the computer features and the size of the bit array.

On the other hand, focusing on the second step of the matching algorithm, the
minutiae neighborhood of each minutia is calculated within all minutiae that set
the fingerprint, based on the Euclidean distance. The square root results from
this operation are obtained by using two methods: accessing to a pre-established
table with the 1024 former square root results or, if the value is not contained
in this table, performing the square root operation using the C# Math Class. To
avoid the overhead of this two methods in the translated matching algorithm,
the square Euclidean distance is used instead.



4 Experimental results

The experiments were executed using an Intel i5-8600K processor running at
3.60 GHz. The machine has six L1 and L2 cache memory of 32 and 256 kBytes,
respectively, and a single L3 cache of 9 MBytes. Also, it has a 8 GB of RAM
(DDR4 with dual-channel). Time results were obtained by using the Stopwatch
Class from .NET Framework in C# and the C++11 Chrono Library in the C++
library. The FVC2004 DB1A database, which contains 800 hundred latent fin-
gerprints with perturbations deliberately introduced, has been used to perform
the experiments. Regarding the optimization of the bit population count, a fast
C++ library (libpopcnt) was used inside the PopCount function in spite of the
original SWAR algorithm from C#. The results achieved from the execution of
both methods are shown in Table 2. The C# method runtime was reduced from
90.176 to 0.440 microseconds in C++ per iteration of counting the set bits from an
array which takes about 160 bytes of memory (20 values of 8 bytes). Thus, since
the array size is less than 512 bytes, an unrolled pop count algorithm is selected
by the library to perform the operation. On the other hand, an AVX2 algorithm
would be executed if the array size were over 512 bytes, however, this situation
does not take place in the original DMC algorithm but will be addressed in a
future work to improve the accuracy without increasing the execution time. In
speed-up terms, the function acceleration achieved in C++ is up to 204.8 times
faster than the original C# one.

Table 2. Time, in microseconds, and speed-up results per bit population count iter-
ation inside the PopCount function, where the performances of the SWAR algorithm
from C# and the fast C++ libpopcnt library are compared.

C# SWAR algorithm Fast C++ library

Time per iteration 90.176 µs 0.440 µs
Speed-up 1 204.8

With respect to the UpdateNearest function, the use of the Euclidean distance
was replaced by the squared Euclidean distance (SED), eliminating the square
root operation and improving time results per iteration as shown in the Table 3.
This function was accelerated up to 2.83 times using the squared Euclidean dis-
tance, in contrast with the 2.33 achieved with the standard Euclidean distance.

Table 3. Time, in microseconds, and speed-up results per iteration of the UpdateNear-
est function using three approaches: original C# method, this method translated into
C++ and the final method implementing the squared Euclidean distance (SED) in C++.

C# C++ C++ (SED)

Time per iteration 25.47 µs 10.93 µs 9.00 µs
Speed-up 1 2.33 2.83



5 Proposed improvements

Fingerprint matching algorithms are useful methods which commonly perform
the comparison between one latent fingerprint and all the fingerprints stored in
a particular database. This technique reduces the number of fingerprints to ana-
lyze to a reduced set of similar ones, however, the time necessary to perform this
operation depends heavily on the size of the database. In addition, every finger-
print, either rolled, latent or plain, do not necessarily contain a fixed number of
minutiae, owing to the high complexity of the fingerprint sample taking, which
involves several aspect such as pressure variations, finger area (partial or total
sample), large nonlinear distortion, among others [17]. Thus, if the query finger-
print and the selected template one contain a large amount of minutiae each,
the total data used to perform the comparison will take more memory space
than the available inside the L1 cache memory, increasing the cache misses and
the execution time thereby [18]. This situation is shown in Figure 3 where the
average size of a fingerprints pair, obtained from executing the DMC matching
algorithm on the FVC2004 DB1A fingerprints database, is close to the maxi-
mum L1 memory cache capacity.
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Fig. 3. Minutiae lists sizes results, in managed memory, from a sample of 10 fingerprints
from the FVC2004 DB1A database. The average size and the mean pair size of the
minutiae lists sample are presented along the L1 cache memory capacity.

In order to address this issue, the implementation of a parallel program struc-
ture for the DMC matching algorithm is proposed. A diagram of this structure
is presented in Figure 4, where each core from the CPU will have a copy of the
query fingerprint and will perform the matching algorithm between this one and
a block of fingerprints from the database. This block will contain entire finger-
prints or sections, depending on its size in memory, e.g., F5-S1 and F5-S2 from
the previous figure represent a division of the fifth fingerprint from the database
in two sets of minutiae to be processed in two different cores. This processing



block size will be calculated so that all minutiae data would fit properly in the
L1 memory cache when processing the first two steps of the matching algorithm.
If a match occurs between minutiae, the similarity value will be stored and then
computed to obtain a global similarity outcome. Hence, this proposal tries to
solve two common problems of fingerprint matching algorithms: poor scalability
for large fingerprints databases and low efficiency of cache memory usage.
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Fig. 4. Structure of the proposed parallel DMC matching algorithm where each thread
has a copy of the query fingerprint (F1) to be compared with a block of selected
fingerprints from the database whose data fit properly inside the L1 D-cache memory.

6 Conclusions

Two approaches to improve the speed of the fingerprint matching algorithm
DMC proposed by Medina-Pérez et al. [5] has been presented in this work.
The use of C++ as the programming language for executing the DMC matching
algorithm has proved to be the critical step to reduce runtime, owing to the com-
putational overhead that C# causes. To achieve this goal, a CLR Class Library
was implemented inside the original DMC code to work as a linker between the
original C# project and the unmanaged C++ file, enabling the pass of the finger-
prints data in both directions. The unmanaged C++ was deployed into a static
C++ Library (.lib) which contains the optimized matching algorithm written
in this low-level programming language. Regarding more specific optimizations,
the implementation of a fast C++ library for the PopCount function within the
matching algorithm improves the acceleration of the set bits counting operation
up to 204.8 times, in contrast to the SWAR C# method. Concerning the Update-
Nearest function, the same algorithm as C# was implemented in the C++ library,
obtaining an enhancement up to 2.33 times faster by translating this method into
C++. Then, the use of the squared Euclidean distance inside the UpdateNearest
function is addressed for calculating the minutiae neighborhood, proving to be
up to 2.83 times faster than the no-squared approach in C#. To conclude, a new
approach to enhancement the DMC matching algorithm performance has been
proposed using parallel programming techniques where each thread compares
the copied query fingerprint with blocks of template fingerprints which would
fit properly in the L1 D-cache memory for the two first steps of the matching
algorithm. It has been shown that, focusing on the DMC matching algorithm,
the total data size in managed memory from two fingerprints is, in some cases,



bigger than the L1 cache memory capacity. This situation could slow down the
calculation performance owing to cache memory misses and the poor scalability
for large databases, issues that could be addressed by using our novel suggestion.
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