263,621 research outputs found

    Study of Light Scalar Meson Structure in D1D_1 decay

    Full text link
    We study the quark structure of the sigma meson through the decay of D1(2430)D_1(2430) meson by constructing an effective Lagrangian for charmed mesons interacting with light mesons based on the chiral symmetry and heavy quark symmetry. Within the linear realization of the chiral symmetry, we include the P-wave charmed mesons (D1(2430)D_1(2430), D0(2400)D_0(2400)) as the chiral partners of (D∗D^\ast, DD), and the light scalar mesons as the chiral partner of the pseudoscalar mesons. In the light meson sector, both the qqˉq\bar{q} and qqqˉqˉqq\bar{q}\bar{q} states are incorporated respecting their different U(1)A_A transformation properties. We predict the D1→DππD_1 \to D\pi\pi decay width with two pions in the I=0, l=0I=0,\,l=0 channel, which can be tested in the future experiment. We find that the width increases with the percentage of the qqˉq\bar{q} content in the sigma meson.Comment: 5 pages, 2 figures, Contribution to KMI Inauguration Conference "Quest for the Origin of Particles and the Universe" (KMIIN), 24-26 Nov. 2011, KMI, Nagoya Universit

    Baryon and Lepton Number Violation with Scalar Bilinears

    Get PDF
    We consider all possible scalar bilinears, which couple to two fermions of the standard model. The various baryon and lepton number violating couplings allowed by these exotic scalars are studied. We then discuss which ones are constrained by limits on proton decay (to a lepton and a meson as well as to three leptons), neutron-antineutron oscillations, and neutrinoless double beta decay.Comment: 11 pages latex fil

    Sensitivity analysis modelling for microscale multiphysics robust engineering design

    Get PDF
    Sensitivity Analysis (SA) plays an important role in the development of any practical engineering model. It can help to reveal the sources and mechanisms of variability that provide the key to understanding system uncertainty. SA can also be used to calibrate simulation models for closer agreement with experimental results. Robust Engineering Design (RED) seeks to exploit such knowledge in the search for design solutions that are optimal in terms of performance in the face of variability. Microscale and multiphysics problems present challenges to modelling due to their complexity, which puts increased demands on computational methods. For example, in developing a model of a piezoelectric actuator, the process of calibration is prolonged by the number of parameters that are difficult to verify with the physical device. In the approach presented in this paper, normalised sensitivity coefficients are determined directly and accurately using the governing finite element model formulation, offering an efficient means of identifying parameters that affect the output of the model, leading to increased accuracy and knowledge of system performance in the face of variability

    Teamwork and organizational innovation: the moderating role of the HRM context

    Get PDF
    Evidence is accumulating on the role of teams in shaping a variety of business outcomes, but our knowledge on the effect of teamwork on organizational innovation is still evolving. This study examines whether the extent to which two staff groups are organized in teams (production staff and management/administrative staff) affects organizational innovation and whether human resource management (HRM) systems, which can be of facilitating or con- straining nature, enhance the teamwork/innovation relationships. Hypotheses were tested with lagged and longitudinal data derived from 18 to 45 organizations from the UK manufacturing sector. Results suggest that the more widespread the use of teamwork in organizations, the higher the level of organizational innovation. Furthermore, this effect depends, particularly for production teams, on the overall quality of the HRM systems that exist in their organizations. Teamwork/innovation relationships are further moderated (for management and administrative teams) by an HRM practice that provides teams with time for thoughtful reflection. Thus, HRM systems can be of more or less facilitating or constraining nature for teams in organizations

    The kindest cut: Enhancing the user experience of mobile tv through adequate zooming

    Get PDF
    The growing market of Mobile TV requires automated adaptation of standard TV footage to small size displays. Especially extreme long shots (XLS) depicting distant objects can spoil the user experience, e.g. in soccer content. Automated zooming schemes can improve the visual experience if the resulting footage meets user expectations in terms of the visual detail and quality but does not omit valuable context information. Current zooming schemes are ignorant of beneficial zoom ranges for a given target size when applied to standard definition TV footage. In two experiments 84 participants were able to switch between original and zoom enhanced soccer footage at three sizes - from 320x240 (QVGA) down to 176x144 (QCIF). Eye tracking and subjective ratings showed that zoom factors between 1.14 and 1.33 were preferred for all sizes. Interviews revealed that a zoom factor of 1.6 was too high for QVGA content due to low perceived video quality, but beneficial for QCIF size. The optimal zoom depended on the target display size. We include a function to compute the optimal zoom for XLS depending on the target device size. It can be applied in automatic content adaptation schemes and should stimulate further research on the requirements of different shot types in video coding

    Numerical analysis of a downsized 2-stroke uniflow engine

    Get PDF
    In order to optimize the 2-stroke uniflow engine performance on vehicle applications, numerical analysis has been introduced, 3D CFD model has been built for the optimization of intake charge organization. The scavenging process was investigated and the intake port design details were improved. Then the output data from 3D CFD calculation were applied to a 1D engine model to process the analysis on engine performance. The boost system optimization of the engine has been carried out also. Furthermore, a vehicle model was also set up to investigate the engine in-vehicle performance

    Semi-classical States in Homogeneous Loop Quantum Cosmology

    Get PDF
    Semi-classical states in homogeneous loop quantum cosmology (LQC) are constructed by two different ways. In the first approach, we firstly construct an exponentiated annihilation operator. Then a kind of semi-classical (coherent) state is obtained by solving the eigen-equation of that operator. Moreover, we use these coherent states to analyze the semi-classical limit of the quantum dynamics. It turns out that the Hamiltonian constraint operator employed currently in homogeneous LQC has correct classical limit with respect to the coherent states. In the second approach, the other kind of semi-classical state is derived from the mathematical construction of coherent states for compact Lie groups due to Hall.Comment: 13 pages, submitted to CQ
    • …
    corecore