124 research outputs found

    Ti₃C₂ MXene-based Schottky Photocathode for Enhanced Photoelectrochemical Sensing

    Get PDF
    Nanomaterials are vital to the realization of photoelectrochemical (PEC) sensing platfrom that provides the sensitive detection and quantification of low-abundance biological samples. Here, this work reports a Schottky junction-based BiOI/Ti₃C₂ heterostructure, used as a photocathode for PEC bioanalysis. Specially, we realize in situ growth of flower-like BiOI on 2D intrinsically negatively charged Ti₃C₂ MXene nanosheet that endows BiOI/Ti₃C₂ heterostructure with admirably combined merits, noting in particular the generation of built-in electric field and the decrease of contact resistance between BiOI and Ti₃C₂. Under the visible light irradiation, the BiOI/Ti₃C₂ heterostructure-modified PEC platform displays superior cathodic photocurrent signal, while PEC response cuts down with the presence of L-Cysteine (L-Cys) as a representative analyte owing to the metal-S bond formation. The “signal-off” PEC sensing strategy shows good performance in terms of sensitivity, limit of detection (LOD, 0.005 nM) and stability. This research reveals the great potentials of MXene-based heterostructure in the application field of PEC sensor establishment

    Recent Development of the Synthesis and Engineering Applications of One-Dimensional Boron Nitride Nanomaterials

    Get PDF
    One-dimensional (1D) nanomaterials with novel photoelectric, magnetic, mechanical, and electronic transport properties have long been the research focus throughout the world. Herein, the recent achievements in preparation of 1D boron nitride nanomaterials, including nanotubes, nanowires, nanoribbons, nanorods, and nanofibres are reviewed. As the most intriguing and researched polymorph, boron nitride nanotubes (BNNTs) are introduced thoroughly involving their functionalization and doping. The electronics and engineering applications of 1D boron nitride nanomaterials are illustrated in nanoscale devices, hydrogen storage, polymer composites, and newly developed biomedical fields in detail

    Global Priority Conservation Areas in the Face of 21st Century Climate Change

    Get PDF
    In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the “Global 200” ecoregions – a set of priority ecoregions designed to “achieve the goal of saving a broad diversity of the Earth’s ecosystems” – over the 21st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991–2010 and 2081–2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.This study was supported by the Environmental Protection Public Service Project of China (201209031) (URL:http://kjs.mep.gov.cn/gyxhykyzx/)

    Pemetrexed plus Platinum as the First-Line Treatment Option for Advanced Non-Small Cell Lung Cancer: A Meta-Analysis of Randomized Controlled Trials

    Get PDF
    To compare the efficacy and toxicities of pemetrexed plus platinum with other platinum regimens in patients with previously untreated advanced non-small cell lung cancer (NSCLC). Methods: A meta-analysis was performed using trials identified through PubMed, EMBASE, and Cochrane databases. Two investigators independently assessed the quality of the trials and extracted data. The outcomes included overall survival (OS), progression-free survival (PFS), response rate (RR), and different types of toxicity. Hazard ratios (HRs), odds ratios (ORs) and their 95% confidence intervals (CIs) were pooled using RevMan software. Results: Four trials involving 2,518 patients with previously untreated advanced NSCLC met the inclusion criteria. Pemetrexed plus platinum chemotherapy (PPC) improved survival compared with other platinum-based regimens (PBR) in patients with advanced NSCLC (HR = 0.91, 95% CI: 0.83–1.00, p = 0.04), especially in those with non-squamous histology (HR = 0.87, 95% CI: 0.77–0.98, p = 0.02). No statistically significant improvement in either PFS or RR was found in PPC group as compared with PBR group (HR = 1.03, 95% CI: 0.94–1.13, p = 0.57; OR = 1.15, 95% CI: 0.95–1.39, p = 0.15, respectively). Compared with PBR, PPC led to less grade 3–4 neutropenia and leukopenia but more grade 3–4 nausea. However, hematological toxicity analysis revealed significant heterogeneities. Conclusion: Our results suggest that PPC in the first-line setting leads to a significant survival advantage with acceptable toxicities for advanced NSCLC patients, especially those with non-squamous histology, as compared with other PRB. PPC could be considered as the first-line treatment option for advanced NSCLC patients, especially those with non-squamous histology

    Detecting One-Hundred-Year Environmental Changes in Western China Using Seven-Year Repeat Photography

    Get PDF
    Due to its diverse, wondrous plants and unique topography, Western China has drawn great attention from explorers and naturalists from the Western World. Among them, Ernest Henry Wilson (1876 –1930), known as ‘Chinese’ Wilson, travelled to Western China five times from 1899 to 1918. He took more than 1,000 photos during his travels. These valuable photos illustrated the natural and social environment of Western China a century ago. Since 1997, we had collected E.H. Wilson's old pictures, and then since 2004, along the expedition route of E.H. Wilson, we took 7 years to repeat photographing 250 of these old pictures. Comparing Wilson's photos with ours, we found an obvious warming trend over the 100 years, not only in specific areas but throughout the entire Western China. Such warming trend manifested in phenology changes, community shifts and melting snow in alpine mountains. In this study, we also noted remarkable vegetation changes. Out of 62 picture pairs were related to vegetation change, 39 indicated vegetation has changed to the better condition, 17 for degraded vegetation and six for no obvious change. Also in these photos at a century interval, we found not only rapid urbanization in Western China, but also the disappearance of traditional cultures. Through such comparisons, we should not only be amazed about the significant environmental changes through time in Western China, but also consider its implications for protecting environment while meeting the economic development beyond such changes

    Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes

    Get PDF
    As the relative performance of alkali activated slag (AAS) concretes in comparison to portland cement (PC) counterparts for chloride transport and resulting corrosion of steel bars is not clear, an investigation was carried out and the results are reported in this paper. The effect of alkali concentration and modulus of sodium silicate solution used in AAS was studied. Chloride transport and corrosion properties were assessed with the help of electrical resistivity, non-steady state chloride diffusivity, onset of corrosion, rate of corrosion and pore solution chemistry. It was found that: (i) although chloride content at surface was higher for the AAS concretes, they had lower chloride diffusivity than PC concrete; (ii) pore structure, ionic exchange and interaction effect of hydrates strongly influenced the chloride transport in the AAS concretes; (iii) steel corrosion resistance of the AAS concretes was comparable to that of PC concrete under intermittent chloride ponding regime, with the exception of 6 % Na2O and Ms of 1.5; (iv) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (v) the increase of alkali concentration of the activator generally increased the resistance of AAS concretes to chloride transport and reduced its resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the chloride transport and the corrosion resistance
    corecore