144,112 research outputs found

    A Bi-Hamiltonian Formulation for Triangular Systems by Perturbations

    Full text link
    A bi-Hamiltonian formulation is proposed for triangular systems resulted by perturbations around solutions, from which infinitely many symmetries and conserved functionals of triangular systems can be explicitly constructed, provided that one operator of the Hamiltonian pair is invertible. Through our formulation, four examples of triangular systems are exhibited, which also show that bi-Hamiltonian systems in both lower dimensions and higher dimensions are many and varied. Two of four examples give local 2+1 dimensional bi-Hamiltonian systems and illustrate that multi-scale perturbations can lead to higher-dimensional bi-Hamiltonian systems.Comment: 16 pages, to appear in J. Math. Phy

    Design of DG-MOSFET's for high linearity performance

    Get PDF
    No abstract avaliable

    A refined invariant subspace method and applications to evolution equations

    Full text link
    The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations was analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact solutions with generalized separated variables.Comment: 16 page

    Extension of Hereditary Symmetry Operators

    Full text link
    Two models of candidates for hereditary symmetry operators are proposed and thus many nonlinear systems of evolution equations possessing infinitely many commutative symmetries may be generated. Some concrete structures of hereditary symmetry operators are carefully analyzed on the base of the resulting general conditions and several corresponding nonlinear systems are explicitly given out as illustrative examples.Comment: 13 pages, LaTe

    A Class of Coupled KdV systems and Their Bi-Hamiltonian Formulations

    Full text link
    A Hamiltonian pair with arbitrary constants is proposed and thus a sort of hereditary operators is resulted. All the corresponding systems of evolution equations possess local bi-Hamiltonian formulation and a special choice of the systems leads to the KdV hierarchy. Illustrative examples are given.Comment: 8 pages, late

    Triplicity of Quarks and Leptons

    Full text link
    Quarks come in three colors and have electric charges in multiples of one-third. There are also three families of quarks and leptons. Whereas the first two properties can be understood in terms of unification symmetries such as SU(5), SO(10), or E_6, why there should only be three families remains a mystery. I propose how all three properties involving the number three are connected in a fivefold application of the gauge symmetry SU(3).Comment: 10 pages, including 2 figure

    Non-Abelian Discrete Symmetries and Neutrino Masses: Two Examples

    Full text link
    Two recent examples of non-Abelian discrete symmetries (S_3 and A_4) in understanding neutrino masses and mixing are discussed.Comment: 16 pages, no figure, invited contribution to NJP focus issue on neutrino

    Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints

    Full text link
    The Davey-Stewartson I equation is a typical integrable equation in 2+1 dimensions. Its Lax system being essentially in 1+1 dimensional form has been found through nonlinearization from 2+1 dimensions to 1+1 dimensions. In the present paper, this essentially 1+1 dimensional Lax system is further nonlinearized into 1+0 dimensional Hamiltonian systems by taking the Bargmann constraints. It is shown that the resulting 1+0 dimensional Hamiltonian systems are completely integrable in Liouville sense by finding a full set of integrals of motion and proving their functional independence.Comment: 10 pages, in LaTeX, to be published in J. Phys. Soc. Jpn. 70 (2001

    A Reanalysis of the Hydrodynamic Theory of Fluid, Polar-Ordered Flocks

    Full text link
    I reanalyze the hydrodynamic theory of fluid, polar ordered flocks. I find new linear terms in the hydrodynamic equations which slightly modify the anisotropy, but not the scaling, of the damping of sound modes. I also find that the nonlinearities allowed {\it in equilibrium} do not stabilize long ranged order in spatial dimensions d=2d=2; in accord with the Mermin-Wagner theorem. Nonequilibrium nonlinearities {\it do} stabilize long ranged order in d=2d=2, as argued by earlier work. Some of these were missed by earlier work; it is unclear whether or not they change the scaling exponents in d=2d=2.Comment: 6 pages, no figures. arXiv admin note: text overlap with arXiv:0909.195
    corecore