A bi-Hamiltonian formulation is proposed for triangular systems resulted by
perturbations around solutions, from which infinitely many symmetries and
conserved functionals of triangular systems can be explicitly constructed,
provided that one operator of the Hamiltonian pair is invertible. Through our
formulation, four examples of triangular systems are exhibited, which also show
that bi-Hamiltonian systems in both lower dimensions and higher dimensions are
many and varied. Two of four examples give local 2+1 dimensional bi-Hamiltonian
systems and illustrate that multi-scale perturbations can lead to
higher-dimensional bi-Hamiltonian systems.Comment: 16 pages, to appear in J. Math. Phy